Synergistic efficacy of 405nm light and chlorinated disinfectants for the enhanced decontamination of Clostridium difficile spores

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

The ability of Clostridium difficile to form highly resilient spores which can survive in the environment for prolonged periods causes major contamination problems. Antimicrobial 405 nm light is being developed for environmental decontamination within hospitals, however further information relating to its sporicidal efficacy is required. This study aims to establish the efficacy of 405 nm light for inactivation of C. difficile vegetative cells and spores, and to establish whether spore susceptibility can be enhanced by the combined use of 405 nm light with low concentration chlorinated disinfectants. Vegetative cells and spore suspensions were exposed to increasing doses of 405 nm light (at 70–225 mW/cm2) to establish sensitivity. A 99.9% reduction in vegetative cell population was demonstrated with a dose of 252 J/cm2, however spores demonstrated higher resilience, with a 10-fold increase in required dose. Exposures were repeated with spores suspended in the hospital disinfectants sodium hypochlorite, Actichlor and Tristel at non-lethal concentrations (0.1%, 0.001% and 0.0001%, respectively). Enhanced sporicidal activity was achieved when spores were exposed to 405 nm light in the presence of the disinfectants, with a 99.9% reduction achieved following exposure to 33% less light dose than required when exposed to 405 nm light alone. In conclusion, C. difficile vegetative cells and spores can be successfully inactivated using 405 nm light, the sporicidal efficacy can be significantly enhanced when exposed in the presence of low concentration chlorinated disinfectants. Further research may lead to the potential use of 405 nm light decontamination in combination with selected hospital disinfectants to enhance C. difficile cleaning and infection control procedures.
LanguageEnglish
Pages72-77
Number of pages6
JournalAnaerobe
Volume37
Early online date18 Dec 2015
DOIs
Publication statusPublished - 1 Feb 2016

Fingerprint

Disinfectants
Clostridium
Decontamination
Clostridium difficile
Spores
Light
Dosimetry
Sodium Hypochlorite
Infection Control
Cleaning
Suspensions
Contamination
Cells
Sodium

Keywords

  • Clostridium difficile
  • spores
  • 405nm light
  • inactivation
  • disinfectants
  • synergy

Cite this

@article{a35f2ea77fb14d48aaceff2434b95a8c,
title = "Synergistic efficacy of 405nm light and chlorinated disinfectants for the enhanced decontamination of Clostridium difficile spores",
abstract = "The ability of Clostridium difficile to form highly resilient spores which can survive in the environment for prolonged periods causes major contamination problems. Antimicrobial 405 nm light is being developed for environmental decontamination within hospitals, however further information relating to its sporicidal efficacy is required. This study aims to establish the efficacy of 405 nm light for inactivation of C. difficile vegetative cells and spores, and to establish whether spore susceptibility can be enhanced by the combined use of 405 nm light with low concentration chlorinated disinfectants. Vegetative cells and spore suspensions were exposed to increasing doses of 405 nm light (at 70–225 mW/cm2) to establish sensitivity. A 99.9{\%} reduction in vegetative cell population was demonstrated with a dose of 252 J/cm2, however spores demonstrated higher resilience, with a 10-fold increase in required dose. Exposures were repeated with spores suspended in the hospital disinfectants sodium hypochlorite, Actichlor and Tristel at non-lethal concentrations (0.1{\%}, 0.001{\%} and 0.0001{\%}, respectively). Enhanced sporicidal activity was achieved when spores were exposed to 405 nm light in the presence of the disinfectants, with a 99.9{\%} reduction achieved following exposure to 33{\%} less light dose than required when exposed to 405 nm light alone. In conclusion, C. difficile vegetative cells and spores can be successfully inactivated using 405 nm light, the sporicidal efficacy can be significantly enhanced when exposed in the presence of low concentration chlorinated disinfectants. Further research may lead to the potential use of 405 nm light decontamination in combination with selected hospital disinfectants to enhance C. difficile cleaning and infection control procedures.",
keywords = "Clostridium difficile, spores, 405nm light, inactivation, disinfectants, synergy",
author = "Sian Moorhead and Michelle MacLean and Coia, {John E.} and MacGregor, {Scott J.} and Anderson, {John G.}",
year = "2016",
month = "2",
day = "1",
doi = "10.1016/j.anaerobe.2015.12.006",
language = "English",
volume = "37",
pages = "72--77",
journal = "Anaerobe",
issn = "1075-9964",

}

TY - JOUR

T1 - Synergistic efficacy of 405nm light and chlorinated disinfectants for the enhanced decontamination of Clostridium difficile spores

AU - Moorhead, Sian

AU - MacLean, Michelle

AU - Coia, John E.

AU - MacGregor, Scott J.

AU - Anderson, John G.

PY - 2016/2/1

Y1 - 2016/2/1

N2 - The ability of Clostridium difficile to form highly resilient spores which can survive in the environment for prolonged periods causes major contamination problems. Antimicrobial 405 nm light is being developed for environmental decontamination within hospitals, however further information relating to its sporicidal efficacy is required. This study aims to establish the efficacy of 405 nm light for inactivation of C. difficile vegetative cells and spores, and to establish whether spore susceptibility can be enhanced by the combined use of 405 nm light with low concentration chlorinated disinfectants. Vegetative cells and spore suspensions were exposed to increasing doses of 405 nm light (at 70–225 mW/cm2) to establish sensitivity. A 99.9% reduction in vegetative cell population was demonstrated with a dose of 252 J/cm2, however spores demonstrated higher resilience, with a 10-fold increase in required dose. Exposures were repeated with spores suspended in the hospital disinfectants sodium hypochlorite, Actichlor and Tristel at non-lethal concentrations (0.1%, 0.001% and 0.0001%, respectively). Enhanced sporicidal activity was achieved when spores were exposed to 405 nm light in the presence of the disinfectants, with a 99.9% reduction achieved following exposure to 33% less light dose than required when exposed to 405 nm light alone. In conclusion, C. difficile vegetative cells and spores can be successfully inactivated using 405 nm light, the sporicidal efficacy can be significantly enhanced when exposed in the presence of low concentration chlorinated disinfectants. Further research may lead to the potential use of 405 nm light decontamination in combination with selected hospital disinfectants to enhance C. difficile cleaning and infection control procedures.

AB - The ability of Clostridium difficile to form highly resilient spores which can survive in the environment for prolonged periods causes major contamination problems. Antimicrobial 405 nm light is being developed for environmental decontamination within hospitals, however further information relating to its sporicidal efficacy is required. This study aims to establish the efficacy of 405 nm light for inactivation of C. difficile vegetative cells and spores, and to establish whether spore susceptibility can be enhanced by the combined use of 405 nm light with low concentration chlorinated disinfectants. Vegetative cells and spore suspensions were exposed to increasing doses of 405 nm light (at 70–225 mW/cm2) to establish sensitivity. A 99.9% reduction in vegetative cell population was demonstrated with a dose of 252 J/cm2, however spores demonstrated higher resilience, with a 10-fold increase in required dose. Exposures were repeated with spores suspended in the hospital disinfectants sodium hypochlorite, Actichlor and Tristel at non-lethal concentrations (0.1%, 0.001% and 0.0001%, respectively). Enhanced sporicidal activity was achieved when spores were exposed to 405 nm light in the presence of the disinfectants, with a 99.9% reduction achieved following exposure to 33% less light dose than required when exposed to 405 nm light alone. In conclusion, C. difficile vegetative cells and spores can be successfully inactivated using 405 nm light, the sporicidal efficacy can be significantly enhanced when exposed in the presence of low concentration chlorinated disinfectants. Further research may lead to the potential use of 405 nm light decontamination in combination with selected hospital disinfectants to enhance C. difficile cleaning and infection control procedures.

KW - Clostridium difficile

KW - spores

KW - 405nm light

KW - inactivation

KW - disinfectants

KW - synergy

UR - http://www.sciencedirect.com/science/article/pii/S1075996415300949

U2 - 10.1016/j.anaerobe.2015.12.006

DO - 10.1016/j.anaerobe.2015.12.006

M3 - Article

VL - 37

SP - 72

EP - 77

JO - Anaerobe

T2 - Anaerobe

JF - Anaerobe

SN - 1075-9964

ER -