Abstract
We extend the recent radial symmetry results by Pisante [J. Funct. Anal., 260 (2011), pp. 892--905] and Millot and Pisante [J. Eur. Math. Soc. $($JEMS$)$, 12 (2010), pp. 1069--1096] (who show that the equivariant solutions are the only entire solutions of the three-dimensional Ginzburg--Landau equations in superconductivity theory) to the Landau--de Gennes framework in the theory of nematic liquid crystals. In the low temperature limit, we obtain a characterization of global Landau--de Gennes minimizers, in the restricted class of uniaxial tensors, in terms of the well-known radial-hedgehog solution. We use this characterization to prove that global Landau--de Gennes minimizers cannot be purely uniaxial for sufficiently low temperatures.
Original language | English |
---|---|
Pages (from-to) | 3217–3241 |
Number of pages | 25 |
Journal | SIAM Journal on Mathematical Analysis (SIMA) |
Volume | 44 |
Issue number | 5 |
DOIs | |
Publication status | Published - 10 Sept 2012 |
Keywords
- liquid crystals
- Landau--de Gennes
- Ginzburg--Landau
- low-temperature limit
- radial symmetry
- radial hedgehog
- uniaxiality
- biaxiality
- instability
- asymptotic analysis