Surface-mediated two-dimensional growth of the pharmaceutical carbamazepine

Erin V. Iski, Blair F. Johnston, Alastair J. Florence, Andrew J. Urquhart, E. Charles H. Sykes

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

Scanning tunneling microscopy (STM) has become a staple surface microscopy technique for a number of research fields ranging from semiconductor research to heterogeneous catalysis. Pharmaceutical compounds, however, remain largely unstudied. Here we report the first STM study of carbamazepine (CBZ), an anti-epileptic drug, on Au(111) and Cu(111) surfaces. The analysis reveals that CBZ adopts unusual chiral molecular architectures on both metals. These previously unreported structures, which are strikingly different from CBZ packing arrangements observed in 3D crystal structures, indicate that the main molecular architecture is driven by a combination of CBZ intermolecular hydrogen bonding and metal-CBZ interactions. Comparison of the 2D molecular structures reveals large differences in local geometry and packing density that are dependent on the nature of the metal surface. These results have implications for the potential role of metal surfaces as heteronuclei or templating agents for controlling polymorph formation, which continues to be a problem for many compounds in the pharmaceutical industry including CBZ.

Original languageEnglish
Pages (from-to)5061-5068
Number of pages8
JournalACS Nano
Volume4
Issue number9
DOIs
Publication statusPublished - Sep 2010

    Fingerprint

Keywords

  • carbamazepine
  • polymorph
  • heteronuclei
  • surface
  • STM
  • scanning-tunneling-microscopy
  • Cambridge structural database
  • self assembled monolayers
  • crystal structures
  • organic-molecules
  • ultrahigh vacuum
  • chirality
  • organization
  • network

Cite this