Surface integrity evaluation and the effect of machining-induced surface integrity characteristics on part's performance

Research output: ThesisDoctoral Thesis

Abstract

Surface integrity (SI) is the integrated surface behavior and condition of a material after being modified by a manufacturing process; it describes the influence of surface properties and characteristics upon material functional performance. As the leading-edge field of manufacturing research, SI finishing/machining and the consequent machining-induced complex combination of surface roughness, residual stress, work-hardening, macro and microstructure transformation, strongly affect the fatigue and stress behavior of machined parts. This kind of influence is particularly sensitive and pronounced in the difficult-to-machine materials, which are typically chosen for the most critical applications in the automobile, aerospace and nuclear industry. Thus, well-designed SI processing requirement and accurate SI evaluation model are essential to control and ensure the surface quality and functional performance for these key parts.
In this thesis, an SI descriptive model for quantitative characterization and evaluation of surface integrity is proposed based on five principal SI characteristics. Considering the nature of surface integrity, a conceptual framework of an SI model for machined parts is established, in which the SI model is constructed based on the correlations between SI manufacturing processes, SI characteristics and final functionality. This model offers a theoretical basis and guideline for controlling SI characteristics and improving fatigue properties for machined parts. An empirical model for estimating the SI-characteristics-caused effective stress concentration factor (SCF) is established with fatigue life as the evaluating indicator. For a typical difficult-to-machine material, GH4169 superalloy, usually used in internal combustion engines, its grindability and the influence of processing parameters on the five principal SI characteristics are investigated in detail. The correlations between the processing parameters and the SI characteristics, between the processing parameters and the fatigue properties, and between the SI characteristics and the fatigue properties, are analyzed based on an orthogonally-designed grinding experiment and corresponding rotary bending fatigue testing for GH4169 samples within the selective range of grinding processing parameters. The feasibility and effectiveness of the proposed model for estimating the SI effective SCF are also validated by the experimental results, and this has actually offered an equivalent and convenient means for evaluation of SI and fatigue properties. Finally, the conclusions and contribution of the research are discussed, and potential future work to build on this research is identified.
LanguageEnglish
QualificationPhD
Awarding Institution
  • University Of Strathclyde
Supervisors/Advisors
  • Qin, Yi, Supervisor
Place of PublicationGlasgow
Edition1
Publisher
Publication statusPublished - 28 Feb 2015

Fingerprint

Machining
Fatigue of materials
Processing
Surface properties
Stress concentration
Nuclear industry
Functional materials
Fatigue testing
Aerospace industry
Internal combustion engines
Superalloys
Automotive industry
Strain hardening
Macros
Residual stresses

Keywords

  • surface integrity
  • material functional performance
  • SI descriptive model
  • SI characteristics
  • GH4169 superalloy

Cite this

@phdthesis{3311c26447aa4cd8bb0f99236f444bd1,
title = "Surface integrity evaluation and the effect of machining-induced surface integrity characteristics on part's performance",
abstract = "Surface integrity (SI) is the integrated surface behavior and condition of a material after being modified by a manufacturing process; it describes the influence of surface properties and characteristics upon material functional performance. As the leading-edge field of manufacturing research, SI finishing/machining and the consequent machining-induced complex combination of surface roughness, residual stress, work-hardening, macro and microstructure transformation, strongly affect the fatigue and stress behavior of machined parts. This kind of influence is particularly sensitive and pronounced in the difficult-to-machine materials, which are typically chosen for the most critical applications in the automobile, aerospace and nuclear industry. Thus, well-designed SI processing requirement and accurate SI evaluation model are essential to control and ensure the surface quality and functional performance for these key parts.In this thesis, an SI descriptive model for quantitative characterization and evaluation of surface integrity is proposed based on five principal SI characteristics. Considering the nature of surface integrity, a conceptual framework of an SI model for machined parts is established, in which the SI model is constructed based on the correlations between SI manufacturing processes, SI characteristics and final functionality. This model offers a theoretical basis and guideline for controlling SI characteristics and improving fatigue properties for machined parts. An empirical model for estimating the SI-characteristics-caused effective stress concentration factor (SCF) is established with fatigue life as the evaluating indicator. For a typical difficult-to-machine material, GH4169 superalloy, usually used in internal combustion engines, its grindability and the influence of processing parameters on the five principal SI characteristics are investigated in detail. The correlations between the processing parameters and the SI characteristics, between the processing parameters and the fatigue properties, and between the SI characteristics and the fatigue properties, are analyzed based on an orthogonally-designed grinding experiment and corresponding rotary bending fatigue testing for GH4169 samples within the selective range of grinding processing parameters. The feasibility and effectiveness of the proposed model for estimating the SI effective SCF are also validated by the experimental results, and this has actually offered an equivalent and convenient means for evaluation of SI and fatigue properties. Finally, the conclusions and contribution of the research are discussed, and potential future work to build on this research is identified.",
keywords = "surface integrity, material functional performance, SI descriptive model, SI characteristics, GH4169 superalloy",
author = "Quanren Zeng",
year = "2015",
month = "2",
day = "28",
language = "English",
publisher = "University of Strathclyde",
edition = "1",
school = "University Of Strathclyde",

}

Surface integrity evaluation and the effect of machining-induced surface integrity characteristics on part's performance. / Zeng, Quanren.

1 ed. Glasgow : University of Strathclyde, 2015. 178 p.

Research output: ThesisDoctoral Thesis

TY - THES

T1 - Surface integrity evaluation and the effect of machining-induced surface integrity characteristics on part's performance

AU - Zeng, Quanren

PY - 2015/2/28

Y1 - 2015/2/28

N2 - Surface integrity (SI) is the integrated surface behavior and condition of a material after being modified by a manufacturing process; it describes the influence of surface properties and characteristics upon material functional performance. As the leading-edge field of manufacturing research, SI finishing/machining and the consequent machining-induced complex combination of surface roughness, residual stress, work-hardening, macro and microstructure transformation, strongly affect the fatigue and stress behavior of machined parts. This kind of influence is particularly sensitive and pronounced in the difficult-to-machine materials, which are typically chosen for the most critical applications in the automobile, aerospace and nuclear industry. Thus, well-designed SI processing requirement and accurate SI evaluation model are essential to control and ensure the surface quality and functional performance for these key parts.In this thesis, an SI descriptive model for quantitative characterization and evaluation of surface integrity is proposed based on five principal SI characteristics. Considering the nature of surface integrity, a conceptual framework of an SI model for machined parts is established, in which the SI model is constructed based on the correlations between SI manufacturing processes, SI characteristics and final functionality. This model offers a theoretical basis and guideline for controlling SI characteristics and improving fatigue properties for machined parts. An empirical model for estimating the SI-characteristics-caused effective stress concentration factor (SCF) is established with fatigue life as the evaluating indicator. For a typical difficult-to-machine material, GH4169 superalloy, usually used in internal combustion engines, its grindability and the influence of processing parameters on the five principal SI characteristics are investigated in detail. The correlations between the processing parameters and the SI characteristics, between the processing parameters and the fatigue properties, and between the SI characteristics and the fatigue properties, are analyzed based on an orthogonally-designed grinding experiment and corresponding rotary bending fatigue testing for GH4169 samples within the selective range of grinding processing parameters. The feasibility and effectiveness of the proposed model for estimating the SI effective SCF are also validated by the experimental results, and this has actually offered an equivalent and convenient means for evaluation of SI and fatigue properties. Finally, the conclusions and contribution of the research are discussed, and potential future work to build on this research is identified.

AB - Surface integrity (SI) is the integrated surface behavior and condition of a material after being modified by a manufacturing process; it describes the influence of surface properties and characteristics upon material functional performance. As the leading-edge field of manufacturing research, SI finishing/machining and the consequent machining-induced complex combination of surface roughness, residual stress, work-hardening, macro and microstructure transformation, strongly affect the fatigue and stress behavior of machined parts. This kind of influence is particularly sensitive and pronounced in the difficult-to-machine materials, which are typically chosen for the most critical applications in the automobile, aerospace and nuclear industry. Thus, well-designed SI processing requirement and accurate SI evaluation model are essential to control and ensure the surface quality and functional performance for these key parts.In this thesis, an SI descriptive model for quantitative characterization and evaluation of surface integrity is proposed based on five principal SI characteristics. Considering the nature of surface integrity, a conceptual framework of an SI model for machined parts is established, in which the SI model is constructed based on the correlations between SI manufacturing processes, SI characteristics and final functionality. This model offers a theoretical basis and guideline for controlling SI characteristics and improving fatigue properties for machined parts. An empirical model for estimating the SI-characteristics-caused effective stress concentration factor (SCF) is established with fatigue life as the evaluating indicator. For a typical difficult-to-machine material, GH4169 superalloy, usually used in internal combustion engines, its grindability and the influence of processing parameters on the five principal SI characteristics are investigated in detail. The correlations between the processing parameters and the SI characteristics, between the processing parameters and the fatigue properties, and between the SI characteristics and the fatigue properties, are analyzed based on an orthogonally-designed grinding experiment and corresponding rotary bending fatigue testing for GH4169 samples within the selective range of grinding processing parameters. The feasibility and effectiveness of the proposed model for estimating the SI effective SCF are also validated by the experimental results, and this has actually offered an equivalent and convenient means for evaluation of SI and fatigue properties. Finally, the conclusions and contribution of the research are discussed, and potential future work to build on this research is identified.

KW - surface integrity

KW - material functional performance

KW - SI descriptive model

KW - SI characteristics

KW - GH4169 superalloy

M3 - Doctoral Thesis

PB - University of Strathclyde

CY - Glasgow

ER -