Abstract
SESORS - Surface enhanced spatially offset Raman spectroscopy-imaging is explored for the first time in this study. Multiplexed surface enhanced Raman scattering (SERS) signals have been recovered non-invasively from a depth of 20 mm in tissues for the first time and reconstructed to produce a false colour image. Four unique 'flavours' of SERS nanoparticles (NPs) were injected into a 20 x 50 x 50 mm porcine tissue block at the corners of a 10 mm square. A transmission Raman data cube was acquired over an 11 x 11 pixel grid made up of 2 mm steps. The signals were reconstructed using the unique peak intensities of each of the nanoparticles. A false colour image of the relative signal levels was produced, demonstrating the capability of multiplexed imaging of SERS nanoparticles using deep Raman spectroscopy. A secondary but no less significant achievement was to demonstrate that Raman signals from SERS nanoparticles can be recovered non-invasively from samples of the order of 45-50 mm thick. This is a significant step forward in the ability to detect and identify vibrational fingerprints within tissue and offers the opportunity to adapt these particles and this approach into a clinical setting for disease diagnosis.
Original language | English |
---|---|
Pages (from-to) | 776-780 |
Number of pages | 5 |
Journal | Chemical Science |
Volume | 2 |
Issue number | 4 |
Early online date | 7 Jan 2011 |
DOIs | |
Publication status | Published - 2011 |
Keywords
- silver electrode
- raman scattering
- sers
- tissue
- media
- antibodies
- TIC - Bionanotechnology