Supersonic plasma turbulence in the laboratory

T. G. White, M. T. Oliver, P. Mabey, M. Kühn-Kauffeldt, A. F. A. Bott, L. N. K. Döhl, A. R. Bell, R. Bingham, R. Clarke, J. Foster, G. Giacinti, P. Graham, R. Heathcote, M. Koenig, Y. Kuramitsu, D. Q. Lamb, J. Meinecke, Th. Michel, F. Miniati, M. Notley & 11 others B. Reville, D. Ryu, S. Sarkar, Y. Sakawa, M. P. Selwood, J. Squire, R. H. H. Scott, P. Tzeferacos, N. Woolsey, A. A. Schekochihin, G. Gregori

Research output: Contribution to journalArticle

Abstract

The properties of supersonic, compressible plasma turbulence determine the behavior of many terrestrial and astrophysical systems. In the interstellar medium and molecular clouds, compressible turbulence plays a vital role in star formation and the evolution of our galaxy. Observations of the density and velocity power spectra in the Orion B and Perseus molecular clouds show large deviations from those predicted for incompressible turbulence. Hydrodynamic simulations attribute this to the high Mach number in the interstellar medium (ISM), although the exact details of this dependence are not well understood. Here we investigate experimentally the statistical behavior of boundary-free supersonic turbulence created by the collision of two laser-driven high-velocity turbulent plasma jets. The Mach number dependence of the slopes of the density and velocity power spectra agree with astrophysical observations, and supports the notion that the turbulence transitions from being Kolmogorov-like at low Mach number to being more Burgers-like at higher Mach numbers.

LanguageEnglish
Article number1758
Number of pages6
JournalNature Communications
Volume10
DOIs
Publication statusPublished - 15 Apr 2019

Fingerprint

Plasma turbulence
plasma turbulence
Mach number
Turbulence
Galaxies
turbulence
Hydrodynamics
Power spectrum
molecular clouds
power spectra
astrophysics
Lasers
Plasma jets
free boundaries
plasma jets
Stars
star formation
hydrodynamics
slopes
galaxies

Keywords

  • plasma turbulence
  • hydrodynamic simulations
  • interstellar medium (ISM)
  • Mach number

Cite this

White, T. G., Oliver, M. T., Mabey, P., Kühn-Kauffeldt, M., Bott, A. F. A., Döhl, L. N. K., ... Gregori, G. (2019). Supersonic plasma turbulence in the laboratory. Nature Communications, 10, [1758]. https://doi.org/10.1038/s41467-019-09498-y
White, T. G. ; Oliver, M. T. ; Mabey, P. ; Kühn-Kauffeldt, M. ; Bott, A. F. A. ; Döhl, L. N. K. ; Bell, A. R. ; Bingham, R. ; Clarke, R. ; Foster, J. ; Giacinti, G. ; Graham, P. ; Heathcote, R. ; Koenig, M. ; Kuramitsu, Y. ; Lamb, D. Q. ; Meinecke, J. ; Michel, Th. ; Miniati, F. ; Notley, M. ; Reville, B. ; Ryu, D. ; Sarkar, S. ; Sakawa, Y. ; Selwood, M. P. ; Squire, J. ; Scott, R. H. H. ; Tzeferacos, P. ; Woolsey, N. ; Schekochihin, A. A. ; Gregori, G. / Supersonic plasma turbulence in the laboratory. In: Nature Communications. 2019 ; Vol. 10.
@article{d16f4a6a094a4d088a74ee893ce201e2,
title = "Supersonic plasma turbulence in the laboratory",
abstract = "The properties of supersonic, compressible plasma turbulence determine the behavior of many terrestrial and astrophysical systems. In the interstellar medium and molecular clouds, compressible turbulence plays a vital role in star formation and the evolution of our galaxy. Observations of the density and velocity power spectra in the Orion B and Perseus molecular clouds show large deviations from those predicted for incompressible turbulence. Hydrodynamic simulations attribute this to the high Mach number in the interstellar medium (ISM), although the exact details of this dependence are not well understood. Here we investigate experimentally the statistical behavior of boundary-free supersonic turbulence created by the collision of two laser-driven high-velocity turbulent plasma jets. The Mach number dependence of the slopes of the density and velocity power spectra agree with astrophysical observations, and supports the notion that the turbulence transitions from being Kolmogorov-like at low Mach number to being more Burgers-like at higher Mach numbers.",
keywords = "plasma turbulence, hydrodynamic simulations, interstellar medium (ISM), Mach number",
author = "White, {T. G.} and Oliver, {M. T.} and P. Mabey and M. K{\"u}hn-Kauffeldt and Bott, {A. F. A.} and D{\"o}hl, {L. N. K.} and Bell, {A. R.} and R. Bingham and R. Clarke and J. Foster and G. Giacinti and P. Graham and R. Heathcote and M. Koenig and Y. Kuramitsu and Lamb, {D. Q.} and J. Meinecke and Th. Michel and F. Miniati and M. Notley and B. Reville and D. Ryu and S. Sarkar and Y. Sakawa and Selwood, {M. P.} and J. Squire and Scott, {R. H. H.} and P. Tzeferacos and N. Woolsey and Schekochihin, {A. A.} and G. Gregori",
year = "2019",
month = "4",
day = "15",
doi = "10.1038/s41467-019-09498-y",
language = "English",
volume = "10",
journal = "Nature Communications",
issn = "2041-1723",

}

White, TG, Oliver, MT, Mabey, P, Kühn-Kauffeldt, M, Bott, AFA, Döhl, LNK, Bell, AR, Bingham, R, Clarke, R, Foster, J, Giacinti, G, Graham, P, Heathcote, R, Koenig, M, Kuramitsu, Y, Lamb, DQ, Meinecke, J, Michel, T, Miniati, F, Notley, M, Reville, B, Ryu, D, Sarkar, S, Sakawa, Y, Selwood, MP, Squire, J, Scott, RHH, Tzeferacos, P, Woolsey, N, Schekochihin, AA & Gregori, G 2019, 'Supersonic plasma turbulence in the laboratory' Nature Communications, vol. 10, 1758. https://doi.org/10.1038/s41467-019-09498-y

Supersonic plasma turbulence in the laboratory. / White, T. G.; Oliver, M. T.; Mabey, P.; Kühn-Kauffeldt, M.; Bott, A. F. A.; Döhl, L. N. K.; Bell, A. R.; Bingham, R.; Clarke, R.; Foster, J.; Giacinti, G.; Graham, P.; Heathcote, R.; Koenig, M.; Kuramitsu, Y.; Lamb, D. Q.; Meinecke, J.; Michel, Th.; Miniati, F.; Notley, M.; Reville, B.; Ryu, D.; Sarkar, S.; Sakawa, Y.; Selwood, M. P.; Squire, J.; Scott, R. H. H.; Tzeferacos, P.; Woolsey, N.; Schekochihin, A. A.; Gregori, G.

In: Nature Communications, Vol. 10, 1758, 15.04.2019.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Supersonic plasma turbulence in the laboratory

AU - White, T. G.

AU - Oliver, M. T.

AU - Mabey, P.

AU - Kühn-Kauffeldt, M.

AU - Bott, A. F. A.

AU - Döhl, L. N. K.

AU - Bell, A. R.

AU - Bingham, R.

AU - Clarke, R.

AU - Foster, J.

AU - Giacinti, G.

AU - Graham, P.

AU - Heathcote, R.

AU - Koenig, M.

AU - Kuramitsu, Y.

AU - Lamb, D. Q.

AU - Meinecke, J.

AU - Michel, Th.

AU - Miniati, F.

AU - Notley, M.

AU - Reville, B.

AU - Ryu, D.

AU - Sarkar, S.

AU - Sakawa, Y.

AU - Selwood, M. P.

AU - Squire, J.

AU - Scott, R. H. H.

AU - Tzeferacos, P.

AU - Woolsey, N.

AU - Schekochihin, A. A.

AU - Gregori, G.

PY - 2019/4/15

Y1 - 2019/4/15

N2 - The properties of supersonic, compressible plasma turbulence determine the behavior of many terrestrial and astrophysical systems. In the interstellar medium and molecular clouds, compressible turbulence plays a vital role in star formation and the evolution of our galaxy. Observations of the density and velocity power spectra in the Orion B and Perseus molecular clouds show large deviations from those predicted for incompressible turbulence. Hydrodynamic simulations attribute this to the high Mach number in the interstellar medium (ISM), although the exact details of this dependence are not well understood. Here we investigate experimentally the statistical behavior of boundary-free supersonic turbulence created by the collision of two laser-driven high-velocity turbulent plasma jets. The Mach number dependence of the slopes of the density and velocity power spectra agree with astrophysical observations, and supports the notion that the turbulence transitions from being Kolmogorov-like at low Mach number to being more Burgers-like at higher Mach numbers.

AB - The properties of supersonic, compressible plasma turbulence determine the behavior of many terrestrial and astrophysical systems. In the interstellar medium and molecular clouds, compressible turbulence plays a vital role in star formation and the evolution of our galaxy. Observations of the density and velocity power spectra in the Orion B and Perseus molecular clouds show large deviations from those predicted for incompressible turbulence. Hydrodynamic simulations attribute this to the high Mach number in the interstellar medium (ISM), although the exact details of this dependence are not well understood. Here we investigate experimentally the statistical behavior of boundary-free supersonic turbulence created by the collision of two laser-driven high-velocity turbulent plasma jets. The Mach number dependence of the slopes of the density and velocity power spectra agree with astrophysical observations, and supports the notion that the turbulence transitions from being Kolmogorov-like at low Mach number to being more Burgers-like at higher Mach numbers.

KW - plasma turbulence

KW - hydrodynamic simulations

KW - interstellar medium (ISM)

KW - Mach number

UR - http://www.scopus.com/inward/record.url?scp=85064429152&partnerID=8YFLogxK

UR - https://www.nature.com/ncomms/

U2 - 10.1038/s41467-019-09498-y

DO - 10.1038/s41467-019-09498-y

M3 - Article

VL - 10

JO - Nature Communications

T2 - Nature Communications

JF - Nature Communications

SN - 2041-1723

M1 - 1758

ER -

White TG, Oliver MT, Mabey P, Kühn-Kauffeldt M, Bott AFA, Döhl LNK et al. Supersonic plasma turbulence in the laboratory. Nature Communications. 2019 Apr 15;10. 1758. https://doi.org/10.1038/s41467-019-09498-y