Superplasticity of Ti-6Al-4V titanium alloy: microstructure evolution and constitutive modelling

Ahmed O. Mosleh, Anastasia V. Mikhaylovskaya, Anton D. Kotov, James S. Kwame, Sergey A. Aksenov

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

Determining a desirable strain rate-temperature range for superplasticity and elongation-to-failure are critical concerns during the prediction of superplastic forming processes in α + β titanium-based alloys. This paper studies the superplastic deformation behaviour and related microstructural evolution of conventionally processed sheets of Ti-6Al-4V alloy in a strain rate range of 10–5–10–2 s–1 and a temperature range of 750–900 °C. Thermo-Calc calculation and microstructural analysis of the as-annealed samples were done in order to determine the α/β ratio and the grain size of the phases prior to the superplastic deformation. The strain rate ranges, which corresponds to the superplastic behaviour with strain rate sensitivity index m ˃ 0.3, are identified by step-by-step decreasing strain rate tests for various temperatures. Results of the uniaxial isothermal tensile tests at a constant strain rate range of 3 × 10−4–3 × 10−3 s−1 and a temperature range of 800–900 °C are presented and discussed. The experimental stress-strain data are utilized to construct constitutive models, with the purpose of predicting the flow stress behaviour of this alloy. The cross-validation approach is used to examine the predictability of the constructed models. The models exhibit excellent approximation and predictability of the flow behaviour of the studied alloy. Strain-induced changes in the grain structure are investigated by scanning electron microscopy and electron backscattered diffraction. Particular attention is paid to the comparison between the deformation behaviour and the microstructural evolution at 825 °C and 875 °C. Maximum elongation-to-failure of 635% and low residual cavitation were observed after a strain of 1.8 at 1 × 10−3 s−1 and 825 °C. This temperature provides 23 ± 4% β phase and a highly stable grain structure of both phases. The optimum deformation temperature obtained for the studied alloy is 825 °C, which is considered a comparatively low deformation temperature for the studied Ti-6Al-4V alloy.
LanguageEnglish
Article number1756
Number of pages20
JournalMaterials
Volume12
Issue number11
DOIs
Publication statusPublished - 30 May 2019

Fingerprint

Superplasticity
Titanium alloys
Strain rate
Microstructure
Superplastic deformation
Crystal microstructure
Microstructural evolution
Temperature
Elongation
Constitutive models
Plastic flow
Cavitation
Electron diffraction
Titanium
Scanning electron microscopy

Keywords

  • titanium alloys
  • superplastic deformation
  • microstructure evolution
  • constitutive modelling
  • cavitation

Cite this

Mosleh, Ahmed O. ; Mikhaylovskaya, Anastasia V. ; Kotov, Anton D. ; Kwame, James S. ; Aksenov, Sergey A. / Superplasticity of Ti-6Al-4V titanium alloy : microstructure evolution and constitutive modelling. In: Materials. 2019 ; Vol. 12, No. 11.
@article{fec4bc12239d4849bd18b47797ddc5e9,
title = "Superplasticity of Ti-6Al-4V titanium alloy: microstructure evolution and constitutive modelling",
abstract = "Determining a desirable strain rate-temperature range for superplasticity and elongation-to-failure are critical concerns during the prediction of superplastic forming processes in α + β titanium-based alloys. This paper studies the superplastic deformation behaviour and related microstructural evolution of conventionally processed sheets of Ti-6Al-4V alloy in a strain rate range of 10–5–10–2 s–1 and a temperature range of 750–900 °C. Thermo-Calc calculation and microstructural analysis of the as-annealed samples were done in order to determine the α/β ratio and the grain size of the phases prior to the superplastic deformation. The strain rate ranges, which corresponds to the superplastic behaviour with strain rate sensitivity index m ˃ 0.3, are identified by step-by-step decreasing strain rate tests for various temperatures. Results of the uniaxial isothermal tensile tests at a constant strain rate range of 3 × 10−4–3 × 10−3 s−1 and a temperature range of 800–900 °C are presented and discussed. The experimental stress-strain data are utilized to construct constitutive models, with the purpose of predicting the flow stress behaviour of this alloy. The cross-validation approach is used to examine the predictability of the constructed models. The models exhibit excellent approximation and predictability of the flow behaviour of the studied alloy. Strain-induced changes in the grain structure are investigated by scanning electron microscopy and electron backscattered diffraction. Particular attention is paid to the comparison between the deformation behaviour and the microstructural evolution at 825 °C and 875 °C. Maximum elongation-to-failure of 635{\%} and low residual cavitation were observed after a strain of 1.8 at 1 × 10−3 s−1 and 825 °C. This temperature provides 23 ± 4{\%} β phase and a highly stable grain structure of both phases. The optimum deformation temperature obtained for the studied alloy is 825 °C, which is considered a comparatively low deformation temperature for the studied Ti-6Al-4V alloy.",
keywords = "titanium alloys, superplastic deformation, microstructure evolution, constitutive modelling, cavitation",
author = "Mosleh, {Ahmed O.} and Mikhaylovskaya, {Anastasia V.} and Kotov, {Anton D.} and Kwame, {James S.} and Aksenov, {Sergey A.}",
year = "2019",
month = "5",
day = "30",
doi = "10.3390/ma12111756",
language = "English",
volume = "12",
journal = "Materials",
issn = "1996-1944",
number = "11",

}

Superplasticity of Ti-6Al-4V titanium alloy : microstructure evolution and constitutive modelling. / Mosleh, Ahmed O.; Mikhaylovskaya, Anastasia V.; Kotov, Anton D.; Kwame, James S.; Aksenov, Sergey A.

In: Materials, Vol. 12, No. 11, 1756, 30.05.2019.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Superplasticity of Ti-6Al-4V titanium alloy

T2 - Materials

AU - Mosleh, Ahmed O.

AU - Mikhaylovskaya, Anastasia V.

AU - Kotov, Anton D.

AU - Kwame, James S.

AU - Aksenov, Sergey A.

PY - 2019/5/30

Y1 - 2019/5/30

N2 - Determining a desirable strain rate-temperature range for superplasticity and elongation-to-failure are critical concerns during the prediction of superplastic forming processes in α + β titanium-based alloys. This paper studies the superplastic deformation behaviour and related microstructural evolution of conventionally processed sheets of Ti-6Al-4V alloy in a strain rate range of 10–5–10–2 s–1 and a temperature range of 750–900 °C. Thermo-Calc calculation and microstructural analysis of the as-annealed samples were done in order to determine the α/β ratio and the grain size of the phases prior to the superplastic deformation. The strain rate ranges, which corresponds to the superplastic behaviour with strain rate sensitivity index m ˃ 0.3, are identified by step-by-step decreasing strain rate tests for various temperatures. Results of the uniaxial isothermal tensile tests at a constant strain rate range of 3 × 10−4–3 × 10−3 s−1 and a temperature range of 800–900 °C are presented and discussed. The experimental stress-strain data are utilized to construct constitutive models, with the purpose of predicting the flow stress behaviour of this alloy. The cross-validation approach is used to examine the predictability of the constructed models. The models exhibit excellent approximation and predictability of the flow behaviour of the studied alloy. Strain-induced changes in the grain structure are investigated by scanning electron microscopy and electron backscattered diffraction. Particular attention is paid to the comparison between the deformation behaviour and the microstructural evolution at 825 °C and 875 °C. Maximum elongation-to-failure of 635% and low residual cavitation were observed after a strain of 1.8 at 1 × 10−3 s−1 and 825 °C. This temperature provides 23 ± 4% β phase and a highly stable grain structure of both phases. The optimum deformation temperature obtained for the studied alloy is 825 °C, which is considered a comparatively low deformation temperature for the studied Ti-6Al-4V alloy.

AB - Determining a desirable strain rate-temperature range for superplasticity and elongation-to-failure are critical concerns during the prediction of superplastic forming processes in α + β titanium-based alloys. This paper studies the superplastic deformation behaviour and related microstructural evolution of conventionally processed sheets of Ti-6Al-4V alloy in a strain rate range of 10–5–10–2 s–1 and a temperature range of 750–900 °C. Thermo-Calc calculation and microstructural analysis of the as-annealed samples were done in order to determine the α/β ratio and the grain size of the phases prior to the superplastic deformation. The strain rate ranges, which corresponds to the superplastic behaviour with strain rate sensitivity index m ˃ 0.3, are identified by step-by-step decreasing strain rate tests for various temperatures. Results of the uniaxial isothermal tensile tests at a constant strain rate range of 3 × 10−4–3 × 10−3 s−1 and a temperature range of 800–900 °C are presented and discussed. The experimental stress-strain data are utilized to construct constitutive models, with the purpose of predicting the flow stress behaviour of this alloy. The cross-validation approach is used to examine the predictability of the constructed models. The models exhibit excellent approximation and predictability of the flow behaviour of the studied alloy. Strain-induced changes in the grain structure are investigated by scanning electron microscopy and electron backscattered diffraction. Particular attention is paid to the comparison between the deformation behaviour and the microstructural evolution at 825 °C and 875 °C. Maximum elongation-to-failure of 635% and low residual cavitation were observed after a strain of 1.8 at 1 × 10−3 s−1 and 825 °C. This temperature provides 23 ± 4% β phase and a highly stable grain structure of both phases. The optimum deformation temperature obtained for the studied alloy is 825 °C, which is considered a comparatively low deformation temperature for the studied Ti-6Al-4V alloy.

KW - titanium alloys

KW - superplastic deformation

KW - microstructure evolution

KW - constitutive modelling

KW - cavitation

UR - https://www.mdpi.com/journal/materials

U2 - 10.3390/ma12111756

DO - 10.3390/ma12111756

M3 - Article

VL - 12

JO - Materials

JF - Materials

SN - 1996-1944

IS - 11

M1 - 1756

ER -