Super-selective polysulfone hollow fiber membranes for gas separation: rheological assessment of the spinning solution

S.A. Gordeyev, G.B. Lees, I.R. Dunkin, S.J. Shilton

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

A polysulfone spinning solution used recently to produce enhanced selectivity gas separation hollow fiber membranes was rheologically assessed using a rotational rheometer and an optical shear cell. Effects of temperature and shear rate on viscosity, power law behavior and normal force provided some clues regarding phase inversion and molecular orientation. At relatively low temperatures, phase inversion may occur in the absence of a shear field. At moderately low temperatures, phase inversion may be induced by applied shear. At higher temperatures, phase inversion is not induced by shear but rather shear induces molecular orientation. The results suggest that, unless spinning at low temperature, extrusion shear does not directly induce demixing during membrane formation but, instead, is linked indirectly to phase inversion through induced molecular orientation which, in turn, affects the subsequent dry or wet precipitation stages in spinning. This work is a step towards the construction of phase diagrams and determining their distortion in shear fields. Such knowledge, coupled with deeper insights into induced polymer molecule orientation, would enable further improvements in spinning techniques and membrane performance.
Original languageEnglish
Pages (from-to)4347-4352
Number of pages5
JournalPolymer
Volume42
Issue number9
DOIs
Publication statusPublished - Apr 2001

Keywords

  • rheology
  • phase inversion
  • fiber spinning
  • hollow

Fingerprint Dive into the research topics of 'Super-selective polysulfone hollow fiber membranes for gas separation: rheological assessment of the spinning solution'. Together they form a unique fingerprint.

Cite this