Projects per year
Abstract
This paper presents a numerical study involving the deformation of contact faces in the metal-to-metal seal in a typical pressure relief valve. The valve geometry is simplified to an axisymmetric problem, which comprises a simple geometry consisting of only 3 components. A cylindrical nozzle, which has a valve seat on top, contacts with a disk, which is preloaded by a compressed linear spring. All the components are made of AISI type 316N(L) steel defined using the multilinear kinematic hardening model based on monotonic and cyclic tests at 20°C. In-service observations show that there is a limited fluid leakage through the valve seat at operational pressures about 90% of the set pressure, which is caused by the fluid penetrating into surface asperities at the microscale. Nonlinear FEA in ANSYS using the fluid pressure penetration (FPP) technique revealed that there is a limited amount of fluid penetrating into gap, which is caused by the plastic deformation of the valve seat at the macroscale. Prediction of the fluid pressure distribution over the valve seat just before the valve lift is addressed in this study considering the FPP interaction on multiscale. This is the principal scope, since it allows adjustment of the valve spring force in order to improve the leak tightness.
Original language | English |
---|---|
Pages (from-to) | 61-74 |
Number of pages | 14 |
Journal | Journal of Loss Prevention in the Process Industries |
Volume | 43 |
Early online date | 23 Apr 2016 |
DOIs | |
Publication status | Published - 1 Sept 2016 |
Keywords
- contact
- finite element analysis
- metal-to-metal seal
- plasticity
- safety valve
- type 316 steel
Fingerprint
Dive into the research topics of 'Study of mechanical aspects of leak tightness in a pressure relief valve using advanced FE-analysis'. Together they form a unique fingerprint.Profiles
Projects
- 2 Finished
-
Project 3.7: Investigation and model development of valve leak tightness
Anwar, A. (Post Grad Student), Gorash, Y. (Research Co-investigator), Dempster, W. (Principal Investigator), Hamilton, R. (Academic) & Nash, D. (Academic)
24/06/14 → 24/06/17
Project: Knowledge Exchange
-
N1a: Leak Tightness in Safety Valves
Gorash, Y. (Researcher), Dempster, W. (Principal Investigator), Hamilton, R. (Academic) & Nicholls, W. (Researcher)
1/03/12 → 31/07/13
Project: Knowledge Exchange
-
Microflow leakage through the clearance of a metal-metal seal
Anwar, A. A., Ritos, K., Gorash, Y., Dempster, W. & Nash, D., 1 Dec 2016. 5 p.Research output: Contribution to conference › Paper › peer-review
Open AccessFile -
Application of multiscale approaches to the investigation of sealing surface deformation for the improvement of leak tightness in pressure relief valves
Anwar, A. A., Gorash, Y. & Dempster, W., 13 May 2016, Advanced Methods of Continuum Mechanics for Materials and Structures. Naumenko , K. & Aßmus, M. (eds.). Singapore: Springer, Vol. 60. p. 493-522 30 p. (Advanced Structured Materials; vol. 60).Research output: Chapter in Book/Report/Conference proceeding › Chapter
Open AccessFile5 Citations (Scopus)80 Downloads (Pure) -
Effect of high temperature on structural behaviour of metal-to-metal seal in a pressure relief valve
Anwar, A., Gorash, Y., Dempster, W., Hamilton, R. & Nash, D., 23 Feb 2016, p. 121-132. 12 p.Research output: Contribution to conference › Paper › peer-review
Open AccessFile