Structural studies of cesium, lithium/cesium and sodium/cesium bis(trimethylsilyl)amide (HMDS) complexes

Ana I. Ojeda Amador, Antonio J. Martínez-Martínez, Alan R. Kennedy, Charles T. O'Hara

Research output: Contribution to journalArticle

12 Citations (Scopus)

Abstract

Reacting cesium fluoride with an equimolar n-hexane solution of lithium bis(trimethylsilyl)amide (LiHMDS), allows the isolation of CsHMDS (1) in 80% yield (after sublimation). This preparative route to 1 negates the need for pyrophoric Cs metal or organocesium reagents in its synthesis. If a 2:1 LiHMDS:CsF ratio is employed the heterobimetallic polymer [LiCs(HMDS)2]∞ 2 was isolated (57% yield). By combining equimolar quantities of NaHMDS and CsHMDS in hexane/toluene [NaCs(HMDS)2(toluene)]∞ 3 was isolated (62% yield). Attempts to prepare the corresponding potassium-cesium amide failed, and instead yielded the known monometallic polymer [Cs(HMDS)(toluene)]∞ 4. With the aim of expanding the structural diversity of Cs(HMDS) species, 1 was reacted with several different Lewis basic donor molecules of varying denticity; namely, (R,R)-N,N,N′,N′-tetramethylcyclohexane-1,2-diamine [(R,R)-TMCDA] and N,N,Nʹ,Nʹ-tetramethylethylenediamine (TMEDA), N,N,Nʹ,Nʹʹ,Nʹʹ-pentamethyldiethylenetriamine (PMDETA), tris[2-(dimethylamino)ethyl]amine (Me6-TREN) and tris[2-(2-methoxyethoxy)ethyl]amine (TMEEA). These reactions yielded dimeric [Cs(HMDS)·donor]2 5-7 [where donor is (R,R)-TMCDA, TMEDA and PMDETA respectively], the tetranuclear ‘open’-dimer [{Me6-TREN·Cs(HMDS)}2{Cs(HMDS)}2] 8 and the monomeric Cs(HMDS)·TMEEA 9. Complexes 2,3 and 5-9 were characterized by X-ray crystallography and in solution by multinuclear NMR spectroscopy.
LanguageEnglish
Pages5719–5728
Number of pages10
JournalInorganic Chemistry
Volume55
Issue number11
Early online date13 May 2016
DOIs
Publication statusE-pub ahead of print - 13 May 2016

Fingerprint

Cesium
Toluene
Lithium
cesium
Amides
amides
toluene
amines
lithium
Sodium
sodium
Amines
Polymers
cesium fluorides
Diamines
X ray crystallography
Sublimation
polymers
Hexanes
diamines

Keywords

  • lithium
  • cesium
  • X-ray crystal structures
  • polymers
  • coordination chemistry

Cite this

@article{e18e8a24b84447f3869d68479caf37d1,
title = "Structural studies of cesium, lithium/cesium and sodium/cesium bis(trimethylsilyl)amide (HMDS) complexes",
abstract = "Reacting cesium fluoride with an equimolar n-hexane solution of lithium bis(trimethylsilyl)amide (LiHMDS), allows the isolation of CsHMDS (1) in 80{\%} yield (after sublimation). This preparative route to 1 negates the need for pyrophoric Cs metal or organocesium reagents in its synthesis. If a 2:1 LiHMDS:CsF ratio is employed the heterobimetallic polymer [LiCs(HMDS)2]∞ 2 was isolated (57{\%} yield). By combining equimolar quantities of NaHMDS and CsHMDS in hexane/toluene [NaCs(HMDS)2(toluene)]∞ 3 was isolated (62{\%} yield). Attempts to prepare the corresponding potassium-cesium amide failed, and instead yielded the known monometallic polymer [Cs(HMDS)(toluene)]∞ 4. With the aim of expanding the structural diversity of Cs(HMDS) species, 1 was reacted with several different Lewis basic donor molecules of varying denticity; namely, (R,R)-N,N,N′,N′-tetramethylcyclohexane-1,2-diamine [(R,R)-TMCDA] and N,N,Nʹ,Nʹ-tetramethylethylenediamine (TMEDA), N,N,Nʹ,Nʹʹ,Nʹʹ-pentamethyldiethylenetriamine (PMDETA), tris[2-(dimethylamino)ethyl]amine (Me6-TREN) and tris[2-(2-methoxyethoxy)ethyl]amine (TMEEA). These reactions yielded dimeric [Cs(HMDS)·donor]2 5-7 [where donor is (R,R)-TMCDA, TMEDA and PMDETA respectively], the tetranuclear ‘open’-dimer [{Me6-TREN·Cs(HMDS)}2{Cs(HMDS)}2] 8 and the monomeric Cs(HMDS)·TMEEA 9. Complexes 2,3 and 5-9 were characterized by X-ray crystallography and in solution by multinuclear NMR spectroscopy.",
keywords = "lithium, cesium, X-ray crystal structures, polymers, coordination chemistry",
author = "{Ojeda Amador}, {Ana I.} and Mart{\'i}nez-Mart{\'i}nez, {Antonio J.} and Kennedy, {Alan R.} and O'Hara, {Charles T.}",
year = "2016",
month = "5",
day = "13",
doi = "10.1021/acs.inorgchem.6b00839",
language = "English",
volume = "55",
pages = "5719–5728",
journal = "Inorganic Chemistry",
issn = "0020-1669",
publisher = "American Chemical Society",
number = "11",

}

Structural studies of cesium, lithium/cesium and sodium/cesium bis(trimethylsilyl)amide (HMDS) complexes. / Ojeda Amador, Ana I.; Martínez-Martínez, Antonio J.; Kennedy, Alan R.; O'Hara, Charles T.

In: Inorganic Chemistry, Vol. 55, No. 11, 13.05.2016, p. 5719–5728.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Structural studies of cesium, lithium/cesium and sodium/cesium bis(trimethylsilyl)amide (HMDS) complexes

AU - Ojeda Amador, Ana I.

AU - Martínez-Martínez, Antonio J.

AU - Kennedy, Alan R.

AU - O'Hara, Charles T.

PY - 2016/5/13

Y1 - 2016/5/13

N2 - Reacting cesium fluoride with an equimolar n-hexane solution of lithium bis(trimethylsilyl)amide (LiHMDS), allows the isolation of CsHMDS (1) in 80% yield (after sublimation). This preparative route to 1 negates the need for pyrophoric Cs metal or organocesium reagents in its synthesis. If a 2:1 LiHMDS:CsF ratio is employed the heterobimetallic polymer [LiCs(HMDS)2]∞ 2 was isolated (57% yield). By combining equimolar quantities of NaHMDS and CsHMDS in hexane/toluene [NaCs(HMDS)2(toluene)]∞ 3 was isolated (62% yield). Attempts to prepare the corresponding potassium-cesium amide failed, and instead yielded the known monometallic polymer [Cs(HMDS)(toluene)]∞ 4. With the aim of expanding the structural diversity of Cs(HMDS) species, 1 was reacted with several different Lewis basic donor molecules of varying denticity; namely, (R,R)-N,N,N′,N′-tetramethylcyclohexane-1,2-diamine [(R,R)-TMCDA] and N,N,Nʹ,Nʹ-tetramethylethylenediamine (TMEDA), N,N,Nʹ,Nʹʹ,Nʹʹ-pentamethyldiethylenetriamine (PMDETA), tris[2-(dimethylamino)ethyl]amine (Me6-TREN) and tris[2-(2-methoxyethoxy)ethyl]amine (TMEEA). These reactions yielded dimeric [Cs(HMDS)·donor]2 5-7 [where donor is (R,R)-TMCDA, TMEDA and PMDETA respectively], the tetranuclear ‘open’-dimer [{Me6-TREN·Cs(HMDS)}2{Cs(HMDS)}2] 8 and the monomeric Cs(HMDS)·TMEEA 9. Complexes 2,3 and 5-9 were characterized by X-ray crystallography and in solution by multinuclear NMR spectroscopy.

AB - Reacting cesium fluoride with an equimolar n-hexane solution of lithium bis(trimethylsilyl)amide (LiHMDS), allows the isolation of CsHMDS (1) in 80% yield (after sublimation). This preparative route to 1 negates the need for pyrophoric Cs metal or organocesium reagents in its synthesis. If a 2:1 LiHMDS:CsF ratio is employed the heterobimetallic polymer [LiCs(HMDS)2]∞ 2 was isolated (57% yield). By combining equimolar quantities of NaHMDS and CsHMDS in hexane/toluene [NaCs(HMDS)2(toluene)]∞ 3 was isolated (62% yield). Attempts to prepare the corresponding potassium-cesium amide failed, and instead yielded the known monometallic polymer [Cs(HMDS)(toluene)]∞ 4. With the aim of expanding the structural diversity of Cs(HMDS) species, 1 was reacted with several different Lewis basic donor molecules of varying denticity; namely, (R,R)-N,N,N′,N′-tetramethylcyclohexane-1,2-diamine [(R,R)-TMCDA] and N,N,Nʹ,Nʹ-tetramethylethylenediamine (TMEDA), N,N,Nʹ,Nʹʹ,Nʹʹ-pentamethyldiethylenetriamine (PMDETA), tris[2-(dimethylamino)ethyl]amine (Me6-TREN) and tris[2-(2-methoxyethoxy)ethyl]amine (TMEEA). These reactions yielded dimeric [Cs(HMDS)·donor]2 5-7 [where donor is (R,R)-TMCDA, TMEDA and PMDETA respectively], the tetranuclear ‘open’-dimer [{Me6-TREN·Cs(HMDS)}2{Cs(HMDS)}2] 8 and the monomeric Cs(HMDS)·TMEEA 9. Complexes 2,3 and 5-9 were characterized by X-ray crystallography and in solution by multinuclear NMR spectroscopy.

KW - lithium

KW - cesium

KW - X-ray crystal structures

KW - polymers

KW - coordination chemistry

UR - http://pubs.acs.org/loi/inocaj

U2 - 10.1021/acs.inorgchem.6b00839

DO - 10.1021/acs.inorgchem.6b00839

M3 - Article

VL - 55

SP - 5719

EP - 5728

JO - Inorganic Chemistry

T2 - Inorganic Chemistry

JF - Inorganic Chemistry

SN - 0020-1669

IS - 11

ER -