TY - GEN
T1 - Strategies for decoupling internal and external dynamics resulting from inter-arm passive component tolerances in HVDC-MMC
AU - Wang, Shuren
AU - Adam, Grain
AU - Massoud, Ahmed
AU - Holliday, Derrick
AU - Williams, Barry
N1 - © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
PY - 2019/11/28
Y1 - 2019/11/28
N2 - Modular Multilevel Converter (MMC) performance may be adversely affected by passive component tolerances, such as submodule capacitance and arm inductance variations. Depending on control strategies, the differences in equivalent capacitances and/or inductances of the upper and lower arms of one phase-leg can cause unequal power distribution between upper and lower arms. Assuming passive component tolerances ranging between ±10%, this paper presents a comprehensive assessment of the internal/external coupling effects due to the passive component tolerances within one phase-leg, under the control of common MMC balancing methods. A novel control strategy is proposed to suppress the fundamental component that arises in the dc-link current due to such tolerances, and its effectiveness is demonstrated via simulation and experimentation. The investigation shows that voltage-based common and differential mode balancing control provides effective ac offset suppression while the proposed method offers superior performance in terms of dc-link fundamental current ripple suppression.
AB - Modular Multilevel Converter (MMC) performance may be adversely affected by passive component tolerances, such as submodule capacitance and arm inductance variations. Depending on control strategies, the differences in equivalent capacitances and/or inductances of the upper and lower arms of one phase-leg can cause unequal power distribution between upper and lower arms. Assuming passive component tolerances ranging between ±10%, this paper presents a comprehensive assessment of the internal/external coupling effects due to the passive component tolerances within one phase-leg, under the control of common MMC balancing methods. A novel control strategy is proposed to suppress the fundamental component that arises in the dc-link current due to such tolerances, and its effectiveness is demonstrated via simulation and experimentation. The investigation shows that voltage-based common and differential mode balancing control provides effective ac offset suppression while the proposed method offers superior performance in terms of dc-link fundamental current ripple suppression.
KW - modular multilevel converter (MMC)
KW - internal control
KW - voltage and power balance
KW - component tolerances
U2 - 10.1109/ECCE.2019.8912177
DO - 10.1109/ECCE.2019.8912177
M3 - Conference contribution book
SN - 9781728103952
SP - 209
EP - 213
BT - 2019 IEEE Energy Conversion Congress and Exposition
PB - IEEE
CY - Piscataway, NJ
ER -