### Abstract

State-dependent cloning machines that have so far been considered either deterministically copy a set of states approximately or probablistically copy them exactly. In considering the case of two equiprobable pure states, we derive the maximum global fidelity of N approximate clones given M initial exact copies, where N>M. We also consider strategies that interpolate between approximate and exact cloning. A tight inequality is obtained that expresses a trade-off between the global fidelity and success probability. This inequality is found to tend, in the limit N → ∞, to a known inequality that expresses the trade-off between error and inconclusive result probabilities for state-discrimination measurements. Quantum-computational networks are also constructed for the kinds of cloning machine we describe. For this purpose, we introduce two gates: the distinguishability transfer and state separation gates. Their key properties are described and we show how they may be decomposed into basic operations.

Original language | English |
---|---|

Pages (from-to) | 136-144 |

Journal | Physical Review A |

Volume | 60 |

Issue number | 1 |

DOIs | |

Publication status | Published - Jul 1999 |

### Keywords

- quantum cloning
- quantum physics
- optics

## Cite this

Chefles, A., & Barnett, S. M. (1999). Strategies and networks for state-dependent quantum cloning.

*Physical Review A*,*60*(1), 136-144. https://doi.org/10.1103/PhysRevA.60.136