Strategies and networks for state-dependent quantum cloning

Anthony Chefles, Stephen M. Barnett

Research output: Contribution to journalArticlepeer-review

64 Citations (Scopus)

Abstract

State-dependent cloning machines that have so far been considered either deterministically copy a set of states approximately or probablistically copy them exactly. In considering the case of two equiprobable pure states, we derive the maximum global fidelity of N approximate clones given M initial exact copies, where N>M. We also consider strategies that interpolate between approximate and exact cloning. A tight inequality is obtained that expresses a trade-off between the global fidelity and success probability. This inequality is found to tend, in the limit N → ∞, to a known inequality that expresses the trade-off between error and inconclusive result probabilities for state-discrimination measurements. Quantum-computational networks are also constructed for the kinds of cloning machine we describe. For this purpose, we introduce two gates: the distinguishability transfer and state separation gates. Their key properties are described and we show how they may be decomposed into basic operations.
Original languageEnglish
Pages (from-to)136-144
JournalPhysical Review A
Volume60
Issue number1
DOIs
Publication statusPublished - Jul 1999

Keywords

  • quantum cloning
  • quantum physics
  • optics

Fingerprint

Dive into the research topics of 'Strategies and networks for state-dependent quantum cloning'. Together they form a unique fingerprint.

Cite this