Steric effects in dispersion forces interactions

A.M. Sonnet, E.G. Virga

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

Classically, there have been two different ways to obtain mean-field theories for liquid crystals. One is based on short-range repulsive steric forces and the other on long-range attractive dispersion forces. In the former approach, it is the anisotropic shape of the molecules that leads to the anisotropic interaction, and in the latter it is the anisotropy of the molecular polarizability. In real molecules both causes of anisotropy can be expected to contribute to the effective interaction, and so it is desirable to assess the combined effect of anisotropic long-range attraction and short-range repulsion. Here we present an avenue to this end. We start from dispersion forces interactions and combine them with hard-core repulsions in a formal theory, whose crucial element is the steric tensor, a fourth-rank tensor depending on the anisotropy of the interacting molecules. This tensor can be determined analytically for a special class of molecular shapes.
Original languageEnglish
Article number031704
Number of pages10
JournalPhysical Review E
Volume77
Issue number3
DOIs
Publication statusPublished - Mar 2008

Keywords

  • molecular interactions
  • liquid crystals
  • steric forces
  • dispersion forces

Fingerprint

Dive into the research topics of 'Steric effects in dispersion forces interactions'. Together they form a unique fingerprint.

Cite this