Projects per year
Abstract
Laser-plasma acceleration of protons offers a compact, ultra-fast alternative to conventional acceleration techniques, and is being widely pursued for potential applications in medicine, industry and fundamental science. Creating a stable, collimated beam of protons at high repetition rates presents a key challenge. Here, we demonstrate the generation of multi-MeV proton beams from a fast-replenishing ambient-temperature liquid sheet. The beam has an unprecedentedly low divergence of 1° (≤20 mrad), resulting from magnetic self-guiding of the proton beam during propagation through a low density vapour. The proton beams, generated at a repetition rate of 5 Hz using only 190 mJ of laser energy, exhibit a hundred-fold increase in flux compared to beams from a solid target. Coupled with the high shot-to-shot stability of this source, this represents a crucial step towards applications.
Original language | English |
---|---|
Article number | 1004 |
Number of pages | 9 |
Journal | Nature Communications |
Volume | 16 |
DOIs | |
Publication status | Published - 24 Jan 2025 |
Keywords
- laser accelerated protons
- collimation
- plasma-based accelerators
- l1 lagrangian point
Fingerprint
Dive into the research topics of 'Stable laser-acceleration of high-flux proton beams with plasma collimation'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Nonlinear Optics and Dynamics of Relativistically Transparent Plasmas
McKenna, P. (Principal Investigator), Gray, R. (Co-investigator) & King, M. (Research Co-investigator)
EPSRC (Engineering and Physical Sciences Research Council)
1/11/17 → 31/10/22
Project: Research