TY - JOUR
T1 - Stability of silicon–tin alloyed nanocrystals with high tin concentration synthesized by femtosecond laser plasma in liquid media
AU - Lozac’h, Mickaël
AU - Bürkle, Marius
AU - McDonald, Calum
AU - Miyadera, Tetsuhiko
AU - Koganezawa, Tomoyuki
AU - Mariotti, Davide
AU - Švrček, Vladimir
PY - 2023/5/17
Y1 - 2023/5/17
N2 - Nanocrystals have a great potential for future materials with tunable bandgap, due to their optical properties that are related with the material used, their sizes and their surface termination. Here, we concentrate on the silicon–tin alloy for photovoltaic applications due to their bandgap, lower than bulk Si, and also the possibility to activate direct band to band transition for high tin concentration. We synthesized silicon–tin alloy nanocrystals (SiSn-NCs) with diameter of about 2–3 nm by confined plasma technique employing a femtosecond laser irradiation on amorphous silicon–tin substrate submerged in liquid media. The tin concentration is estimated to be ∼ 17 % , being the highest Sn concentration for SiSn-NCs reported so far. Our SiSn-NCs have a well-defined zinc-blend structure and, contrary to pure tin NCs, also an excellent thermal stability comparable to highly stable silicon NCs. We demonstrate by means of high resolution synchrotron XRD analysis (SPring 8) that the SiSn-NCs remain stable from room temperature up to 400∘C, with a relatively small expansion of the crystal lattice. The high thermal stability observed experimentally is rationalized by means of first-principle calculations.
AB - Nanocrystals have a great potential for future materials with tunable bandgap, due to their optical properties that are related with the material used, their sizes and their surface termination. Here, we concentrate on the silicon–tin alloy for photovoltaic applications due to their bandgap, lower than bulk Si, and also the possibility to activate direct band to band transition for high tin concentration. We synthesized silicon–tin alloy nanocrystals (SiSn-NCs) with diameter of about 2–3 nm by confined plasma technique employing a femtosecond laser irradiation on amorphous silicon–tin substrate submerged in liquid media. The tin concentration is estimated to be ∼ 17 % , being the highest Sn concentration for SiSn-NCs reported so far. Our SiSn-NCs have a well-defined zinc-blend structure and, contrary to pure tin NCs, also an excellent thermal stability comparable to highly stable silicon NCs. We demonstrate by means of high resolution synchrotron XRD analysis (SPring 8) that the SiSn-NCs remain stable from room temperature up to 400∘C, with a relatively small expansion of the crystal lattice. The high thermal stability observed experimentally is rationalized by means of first-principle calculations.
KW - nanoparticles
KW - structural properties
KW - synthesis and processing
KW - electronic properties and materials
KW - nanocrystal
KW - silicon–tin alloy nanocrystals
U2 - 10.1038/s41598-023-33808-6
DO - 10.1038/s41598-023-33808-6
M3 - Article
C2 - 37198177
AN - SCOPUS:85159600573
SN - 2045-2322
VL - 13
JO - Scientific Reports
JF - Scientific Reports
M1 - 7958
ER -