TY - JOUR
T1 - Some views on the construction of bio-tribo-corrosion maps for Ti in Hanks solution
T2 - Particle concentration and applied loads effects
AU - Stack, Margaret
AU - Huang, W.
AU - Wang, G.
AU - Hodge, C.
N1 - Impact Factor: 1.690, Half-Life: 5.9
PY - 2011/12
Y1 - 2011/12
N2 - Tribology of bio-implants is a major limiting issue in materials selection of the appropriate implant for the appropriate patient activity level [1]. For example, for wear of replacement hip joints, wear caused by the sliding action of the bearing surface of the femoral head against the counterface occurs in synovial fluid. Hence, the major challenge of materials scientists in replacement of such materials is to optimize the wear resistance, minimize any potential tribo-corrosion interaction and adverse biocompatibility effects caused by such interactions and reduce wherever possible any adsorption of wear debris into the surrounding tissue.
In Tribology, and in Aqueous Corrosion, various mapping methodologies[1-7] have been developed to characterize the various interactions. The wear map developed by Lim and Ashby [2] classifies the wear regimes at ambient conditions in terms of applied load and velocity, illustrating significant temperature rises and attendant corrosion reactions as a function of the tribological variables. The Pourbaix diagram[8] considers various transitions in terms of potential and pH, therefore presenting corrosion regimes as a function of the driving force of the electrochemical reaction and the hydrogen ion concentration. In tribo-corrosion, there is an extensive recent literature combing the concepts of both approaches to construct tribo-corrosion maps [2-8].
Despite such work, there has been very little work carried out until very recently[9] on the construction of tribo-corrosion maps for application to bio-tribo-corrosion environments. This is despite the fact that such maps may have significant application in optimizing materials for specific patient activity/mass combinations, all of which are important in selection of the most appropriate material combination in total replacement joint procedures.
In studies of wear of candidate hip joint materials, it has been observed that particle concentration of wear debris can have an adverse effect on loosening of the joint, leading to osteolysis and potential revision of the replacement joint material [10]. In such cases, it is important to identify the effects of wear debris on the tribo-corrosion mechanism [12]. Assessing the effects of such particle concentrations with load is also of significance as it will indicate what dependency, if any, particle concentration has at various body masses as defined by variation of applied load.
Hence, in this paper, the effect of applied load and abrasive concentration were assessed at a range of applied loads for Ti rotating against an inert Zirconia ball, in which abrasive particles of SiC were entrained in Hanks solution. The results were used to construct micro-abrasion-corrosion maps for application to biological environments. The significance of the bio-tribo-corrosion map in identifying mechanisms of wastage and the extent of synergy between the tribological and corrosion processes is addressed in this paper.
AB - Tribology of bio-implants is a major limiting issue in materials selection of the appropriate implant for the appropriate patient activity level [1]. For example, for wear of replacement hip joints, wear caused by the sliding action of the bearing surface of the femoral head against the counterface occurs in synovial fluid. Hence, the major challenge of materials scientists in replacement of such materials is to optimize the wear resistance, minimize any potential tribo-corrosion interaction and adverse biocompatibility effects caused by such interactions and reduce wherever possible any adsorption of wear debris into the surrounding tissue.
In Tribology, and in Aqueous Corrosion, various mapping methodologies[1-7] have been developed to characterize the various interactions. The wear map developed by Lim and Ashby [2] classifies the wear regimes at ambient conditions in terms of applied load and velocity, illustrating significant temperature rises and attendant corrosion reactions as a function of the tribological variables. The Pourbaix diagram[8] considers various transitions in terms of potential and pH, therefore presenting corrosion regimes as a function of the driving force of the electrochemical reaction and the hydrogen ion concentration. In tribo-corrosion, there is an extensive recent literature combing the concepts of both approaches to construct tribo-corrosion maps [2-8].
Despite such work, there has been very little work carried out until very recently[9] on the construction of tribo-corrosion maps for application to bio-tribo-corrosion environments. This is despite the fact that such maps may have significant application in optimizing materials for specific patient activity/mass combinations, all of which are important in selection of the most appropriate material combination in total replacement joint procedures.
In studies of wear of candidate hip joint materials, it has been observed that particle concentration of wear debris can have an adverse effect on loosening of the joint, leading to osteolysis and potential revision of the replacement joint material [10]. In such cases, it is important to identify the effects of wear debris on the tribo-corrosion mechanism [12]. Assessing the effects of such particle concentrations with load is also of significance as it will indicate what dependency, if any, particle concentration has at various body masses as defined by variation of applied load.
Hence, in this paper, the effect of applied load and abrasive concentration were assessed at a range of applied loads for Ti rotating against an inert Zirconia ball, in which abrasive particles of SiC were entrained in Hanks solution. The results were used to construct micro-abrasion-corrosion maps for application to biological environments. The significance of the bio-tribo-corrosion map in identifying mechanisms of wastage and the extent of synergy between the tribological and corrosion processes is addressed in this paper.
KW - tribology
KW - bio-tribo-corrosion
KW - maps
KW - particle concentration
KW - bio-implants
KW - replacement joints
KW - wear debris
KW - titanium
UR - http://www.scopus.com/inward/record.url?scp=80055069608&partnerID=8YFLogxK
U2 - 10.1016/j.triboint.2011.07.009
DO - 10.1016/j.triboint.2011.07.009
M3 - Article
SN - 0301-679X
VL - 44
SP - 1827
EP - 1837
JO - Tribology International
JF - Tribology International
IS - 12
ER -