Abstract
Rayleigh-Bénard convection in finite-size enclosures exhibits really intricate features when turbulent states are reached and thermal plumes play a crucial role in a number of them. This complex mechanism may be regarded as a “machine” containing many different working parts: boundary layers, mixing zones, jets, and a relatively free and isothermal central region. These parts are generally regarded as the constitutive “ingredients” whose interplay leads to the emergence of a macroscopic pattern with well-defined properties. Like the Lorenz model (but with the due differences) such a complex structure has a prevailing two-dimensional nature and can be oriented clockwise or anticlockwise (both configurations are equally likely to occur and the flow can exhibit occasional and irregular "reversals" from one to the other without a change in magnitude). It is usually referred to in the literature as "wind of turbulence” or “flywheel”. The present article provides insights into the possible origin of such dynamics and related patterning behavior (supported by “ad hoc” novel numerical simulations carried out for Pr=15 and O(10^3)<=Ra<=O(10^10)) together with a short exposition of existing theories, also illustrating open points and future directions of research.
Original language | English |
---|---|
Pages (from-to) | 563–572 |
Number of pages | 10 |
Journal | Comptes Rendus Mécanique |
Volume | 339 |
DOIs | |
Publication status | Published - 2011 |
Keywords
- computational fluid mechanics
- fluid mechanics
- thermal convection
- transitions