Solving the potential field local minimum problem using internal agent states

M. H. Mabrouk, C.R. McInnes

Research output: Contribution to journalArticlepeer-review

97 Citations (Scopus)
1006 Downloads (Pure)

Abstract

We propose a new, extended artificial potential field method, which uses dynamic internal agent states. The internal states are modelled as a dynamical system of coupled first order differential equations that manipulate the potential field in which the agent is situated. The internal state dynamics are forced by the interaction of the agent with the external environment. Local equilibria in the potential field are then manipulated by the internal states and transformed from stable equilibria to unstable equilibria, allowiong escape from local minima in the potential field. This new methodology successfully solves reactive path planning problems, such as a complex maze with multiple local minima, which cannot be solved using conventional static potential fields.
Original languageEnglish
Pages (from-to)1050-1060
Number of pages11
JournalRobots and Autonomous Systems
Volume56
Issue number12
DOIs
Publication statusPublished - 31 Dec 2008

Keywords

  • path-planning
  • internal agent states
  • potential field method
  • internal state dynamics
  • navigation systems

Fingerprint

Dive into the research topics of 'Solving the potential field local minimum problem using internal agent states'. Together they form a unique fingerprint.

Cite this