Solution chemistry of uranyl ion with iminodiacetate and oxydiacetate: a combined NMR/EXAFS and potentiometry/calorimetry study

J. Jiang, J. C. Renshaw, M. J. Sarsfield, F. R. Livens, D. Collison, J. M. Charnock, H. Eccles

Research output: Contribution to journalArticle

31 Citations (Scopus)

Abstract

The solution chemistry of uranyl ion with iminodiacetate (IDA) and oxydiacetate (ODA) was investigated using NMR and EXAFS spectroscopies, potentiometry, and calorimetry. From the NMR and EXAFS data and depending on stoichiometry and pH, three types of metal:ligand complex were identified in solution in the pH range 3-7: 1:1 and 1:2 monomers; a 2:2 dimer. From NMR and EXAFS data for the IDA system and previous studies, we propose the three complex types are [UO2(IDA)(H2O)2], [UO2(IDA)2]2-, and [(UO2)2(IDA)2(μ-OH) 2]2-. From EXAFS spectroscopy, similar 1:1, 2:2, and 1:2 complexes are found for the ODA system, although 13C NMR spectroscopy was not a useful probe in this system. For the 1:1 and 1:2 complexes in solution, EXAFS spectroscopy is ambiguous because the data can be fitted with either a long U-N/Oether value (ca. 2.9 Å) suggesting 1,7-coordination of the ligand or a U-C interaction at a similar distance, consistent with terminal bidentate coordination. However, the NMR data of the IDA system suggest that 1,7-coordination is the more likely. The stability constants of the three complexes were determined by potentiometric titrations; the log β values are 9.90 ± 0.09 0.08, 16.42 ± 0.21 0.14, and 10.80 ± 0.22 0.15 for the 1:1, 1:2 and 2:2 uranyl-IDA complexes, respectively, and 5.77 ± 0.36 0.20, 7.84 ± 0.63 0.28, and 4.29 ± 0.90 0.27 for the 1:1, 1:2, and 2:2 uranyl-ODA complexes, respectively. The thermodynamic constants for the complexes were calculated from calorimetric titrations; the enthalpy changes (kJ mol-1) and entropy changes (J K-1 mol-1) of complexation for the 1:1, 1:2, and 2:2 complexes respectively are the following. IDA: 12 ± 2, 230 ± 8; 8 ± 2, 151 ± 9; -33 ± 3, -283 ± 11. ODA: 26 ± 2, 198 ± 12; 20 ± 2, 106 ± 8; -24 ± 2; -219 ± 8.

LanguageEnglish
Pages1233-1240
Number of pages8
JournalInorganic Chemistry
Volume42
Issue number4
Early online date24 Jan 2003
DOIs
Publication statusPublished - 2003

Fingerprint

Extended X ray absorption fine structure spectroscopy
potentiometric analysis
Calorimetry
heat measurement
Nuclear magnetic resonance
Ions
chemistry
Titration
nuclear magnetic resonance
Nuclear magnetic resonance spectroscopy
Ligands
ions
titration
spectroscopy
Complexation
Stoichiometry
Dimers
Enthalpy
Entropy
Monomers

Keywords

  • solution chemistry
  • uranyl ion
  • iminodiacetate
  • oxydiacetate
  • combined NMR/EXAFS and Potentiometry/calorimetry study

Cite this

Jiang, J. ; Renshaw, J. C. ; Sarsfield, M. J. ; Livens, F. R. ; Collison, D. ; Charnock, J. M. ; Eccles, H. / Solution chemistry of uranyl ion with iminodiacetate and oxydiacetate : a combined NMR/EXAFS and potentiometry/calorimetry study. In: Inorganic Chemistry. 2003 ; Vol. 42, No. 4. pp. 1233-1240.
@article{86862cc22e8642e4b982e30ee103f944,
title = "Solution chemistry of uranyl ion with iminodiacetate and oxydiacetate: a combined NMR/EXAFS and potentiometry/calorimetry study",
abstract = "The solution chemistry of uranyl ion with iminodiacetate (IDA) and oxydiacetate (ODA) was investigated using NMR and EXAFS spectroscopies, potentiometry, and calorimetry. From the NMR and EXAFS data and depending on stoichiometry and pH, three types of metal:ligand complex were identified in solution in the pH range 3-7: 1:1 and 1:2 monomers; a 2:2 dimer. From NMR and EXAFS data for the IDA system and previous studies, we propose the three complex types are [UO2(IDA)(H2O)2], [UO2(IDA)2]2-, and [(UO2)2(IDA)2(μ-OH) 2]2-. From EXAFS spectroscopy, similar 1:1, 2:2, and 1:2 complexes are found for the ODA system, although 13C NMR spectroscopy was not a useful probe in this system. For the 1:1 and 1:2 complexes in solution, EXAFS spectroscopy is ambiguous because the data can be fitted with either a long U-N/Oether value (ca. 2.9 {\AA}) suggesting 1,7-coordination of the ligand or a U-C interaction at a similar distance, consistent with terminal bidentate coordination. However, the NMR data of the IDA system suggest that 1,7-coordination is the more likely. The stability constants of the three complexes were determined by potentiometric titrations; the log β values are 9.90 ± 0.09 0.08, 16.42 ± 0.21 0.14, and 10.80 ± 0.22 0.15 for the 1:1, 1:2 and 2:2 uranyl-IDA complexes, respectively, and 5.77 ± 0.36 0.20, 7.84 ± 0.63 0.28, and 4.29 ± 0.90 0.27 for the 1:1, 1:2, and 2:2 uranyl-ODA complexes, respectively. The thermodynamic constants for the complexes were calculated from calorimetric titrations; the enthalpy changes (kJ mol-1) and entropy changes (J K-1 mol-1) of complexation for the 1:1, 1:2, and 2:2 complexes respectively are the following. IDA: 12 ± 2, 230 ± 8; 8 ± 2, 151 ± 9; -33 ± 3, -283 ± 11. ODA: 26 ± 2, 198 ± 12; 20 ± 2, 106 ± 8; -24 ± 2; -219 ± 8.",
keywords = "solution chemistry, uranyl ion, iminodiacetate , oxydiacetate, combined NMR/EXAFS and Potentiometry/calorimetry study",
author = "J. Jiang and Renshaw, {J. C.} and Sarsfield, {M. J.} and Livens, {F. R.} and D. Collison and Charnock, {J. M.} and H. Eccles",
year = "2003",
doi = "10.1021/ic020460o",
language = "English",
volume = "42",
pages = "1233--1240",
journal = "Inorganic Chemistry",
issn = "0020-1669",
publisher = "American Chemical Society",
number = "4",

}

Solution chemistry of uranyl ion with iminodiacetate and oxydiacetate : a combined NMR/EXAFS and potentiometry/calorimetry study. / Jiang, J.; Renshaw, J. C.; Sarsfield, M. J.; Livens, F. R.; Collison, D.; Charnock, J. M.; Eccles, H.

In: Inorganic Chemistry, Vol. 42, No. 4, 2003, p. 1233-1240.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Solution chemistry of uranyl ion with iminodiacetate and oxydiacetate

T2 - Inorganic Chemistry

AU - Jiang, J.

AU - Renshaw, J. C.

AU - Sarsfield, M. J.

AU - Livens, F. R.

AU - Collison, D.

AU - Charnock, J. M.

AU - Eccles, H.

PY - 2003

Y1 - 2003

N2 - The solution chemistry of uranyl ion with iminodiacetate (IDA) and oxydiacetate (ODA) was investigated using NMR and EXAFS spectroscopies, potentiometry, and calorimetry. From the NMR and EXAFS data and depending on stoichiometry and pH, three types of metal:ligand complex were identified in solution in the pH range 3-7: 1:1 and 1:2 monomers; a 2:2 dimer. From NMR and EXAFS data for the IDA system and previous studies, we propose the three complex types are [UO2(IDA)(H2O)2], [UO2(IDA)2]2-, and [(UO2)2(IDA)2(μ-OH) 2]2-. From EXAFS spectroscopy, similar 1:1, 2:2, and 1:2 complexes are found for the ODA system, although 13C NMR spectroscopy was not a useful probe in this system. For the 1:1 and 1:2 complexes in solution, EXAFS spectroscopy is ambiguous because the data can be fitted with either a long U-N/Oether value (ca. 2.9 Å) suggesting 1,7-coordination of the ligand or a U-C interaction at a similar distance, consistent with terminal bidentate coordination. However, the NMR data of the IDA system suggest that 1,7-coordination is the more likely. The stability constants of the three complexes were determined by potentiometric titrations; the log β values are 9.90 ± 0.09 0.08, 16.42 ± 0.21 0.14, and 10.80 ± 0.22 0.15 for the 1:1, 1:2 and 2:2 uranyl-IDA complexes, respectively, and 5.77 ± 0.36 0.20, 7.84 ± 0.63 0.28, and 4.29 ± 0.90 0.27 for the 1:1, 1:2, and 2:2 uranyl-ODA complexes, respectively. The thermodynamic constants for the complexes were calculated from calorimetric titrations; the enthalpy changes (kJ mol-1) and entropy changes (J K-1 mol-1) of complexation for the 1:1, 1:2, and 2:2 complexes respectively are the following. IDA: 12 ± 2, 230 ± 8; 8 ± 2, 151 ± 9; -33 ± 3, -283 ± 11. ODA: 26 ± 2, 198 ± 12; 20 ± 2, 106 ± 8; -24 ± 2; -219 ± 8.

AB - The solution chemistry of uranyl ion with iminodiacetate (IDA) and oxydiacetate (ODA) was investigated using NMR and EXAFS spectroscopies, potentiometry, and calorimetry. From the NMR and EXAFS data and depending on stoichiometry and pH, three types of metal:ligand complex were identified in solution in the pH range 3-7: 1:1 and 1:2 monomers; a 2:2 dimer. From NMR and EXAFS data for the IDA system and previous studies, we propose the three complex types are [UO2(IDA)(H2O)2], [UO2(IDA)2]2-, and [(UO2)2(IDA)2(μ-OH) 2]2-. From EXAFS spectroscopy, similar 1:1, 2:2, and 1:2 complexes are found for the ODA system, although 13C NMR spectroscopy was not a useful probe in this system. For the 1:1 and 1:2 complexes in solution, EXAFS spectroscopy is ambiguous because the data can be fitted with either a long U-N/Oether value (ca. 2.9 Å) suggesting 1,7-coordination of the ligand or a U-C interaction at a similar distance, consistent with terminal bidentate coordination. However, the NMR data of the IDA system suggest that 1,7-coordination is the more likely. The stability constants of the three complexes were determined by potentiometric titrations; the log β values are 9.90 ± 0.09 0.08, 16.42 ± 0.21 0.14, and 10.80 ± 0.22 0.15 for the 1:1, 1:2 and 2:2 uranyl-IDA complexes, respectively, and 5.77 ± 0.36 0.20, 7.84 ± 0.63 0.28, and 4.29 ± 0.90 0.27 for the 1:1, 1:2, and 2:2 uranyl-ODA complexes, respectively. The thermodynamic constants for the complexes were calculated from calorimetric titrations; the enthalpy changes (kJ mol-1) and entropy changes (J K-1 mol-1) of complexation for the 1:1, 1:2, and 2:2 complexes respectively are the following. IDA: 12 ± 2, 230 ± 8; 8 ± 2, 151 ± 9; -33 ± 3, -283 ± 11. ODA: 26 ± 2, 198 ± 12; 20 ± 2, 106 ± 8; -24 ± 2; -219 ± 8.

KW - solution chemistry

KW - uranyl ion

KW - iminodiacetate

KW - oxydiacetate

KW - combined NMR/EXAFS and Potentiometry/calorimetry study

UR - http://www.scopus.com/inward/record.url?scp=0037463622&partnerID=8YFLogxK

U2 - 10.1021/ic020460o

DO - 10.1021/ic020460o

M3 - Article

VL - 42

SP - 1233

EP - 1240

JO - Inorganic Chemistry

JF - Inorganic Chemistry

SN - 0020-1669

IS - 4

ER -