TY - JOUR
T1 - Sizing of superconducting cables for turbo-electric distributed propulsion aircraft using a particle swarm optimization approach
AU - Nolan, Steven
AU - Jones, Catherine E.
AU - Norman, Patrick J.
AU - Burt, Graeme M.
N1 - © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
PY - 2022/12/1
Y1 - 2022/12/1
N2 - Superconducting electrical power systems are proposed to meet high specific power densities required for turbo-electric distributed propulsion aircraft. Superconducting materials have unique thermal and electrical requirements for maintaining the superconducting state, which is critical to their normal operation. Electrical system faults can lead to this state being lost for all network assets in the electrical fault path. The resulting temperature rise can prevent the superconducting state from being immediately resumed following fault clearance, requiring disconnection of nonfaulted equipment. Undersized cables experience a higher temperature rise under faulted conditions and disconnect from the system more readily. Oversized cables are heavier and more costly. Therefore, there is a need to optimize the cable size, preventing disconnection of equipment due to temperature rise following a fault while minimizing the weight and cost penalty. This article proposes a system parameter-driven methodology, using particle swarm optimization, to identify fault-tolerant cable designs, which deliver minimum through-life costs. This facilitates high-value, quantifiable design trade studies incorporating system parameters. Key observations drawn are that the choice between improving fault ride-through capability of a superconducting cable by increasing the amount of either superconducting material or conventional former material strongly depends on acceptable system operating temperature and voltage.
AB - Superconducting electrical power systems are proposed to meet high specific power densities required for turbo-electric distributed propulsion aircraft. Superconducting materials have unique thermal and electrical requirements for maintaining the superconducting state, which is critical to their normal operation. Electrical system faults can lead to this state being lost for all network assets in the electrical fault path. The resulting temperature rise can prevent the superconducting state from being immediately resumed following fault clearance, requiring disconnection of nonfaulted equipment. Undersized cables experience a higher temperature rise under faulted conditions and disconnect from the system more readily. Oversized cables are heavier and more costly. Therefore, there is a need to optimize the cable size, preventing disconnection of equipment due to temperature rise following a fault while minimizing the weight and cost penalty. This article proposes a system parameter-driven methodology, using particle swarm optimization, to identify fault-tolerant cable designs, which deliver minimum through-life costs. This facilitates high-value, quantifiable design trade studies incorporating system parameters. Key observations drawn are that the choice between improving fault ride-through capability of a superconducting cable by increasing the amount of either superconducting material or conventional former material strongly depends on acceptable system operating temperature and voltage.
KW - superconducting
KW - electrical protection systems
KW - particle swarm optimisation
KW - aircraft electrical power systems
KW - electrical propulsion aircraft
UR - https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6687316
U2 - 10.1109/TTE.2022.3172495
DO - 10.1109/TTE.2022.3172495
M3 - Article
SN - 2332-7782
VL - 8
SP - 4789
EP - 4798
JO - IEEE Transactions on Transportation Electrification
JF - IEEE Transactions on Transportation Electrification
IS - 4
ER -