Abstract
Fast disintegrating tablets have commonly been used for fast oral drug delivery to patients with swallowing difficulties. The different characteristics of the pore structure of such formulations influence the liquid transport through the tablet and hence affect the disintegration time and the release of the drug in the body. In this work, terahertz time-domain spectroscopy and terahertz pulsed imaging were used as promising analytical techniques to quantitatively analyse the impact of the structural properties on the liquid uptake and swelling rates upon contact with the dissolution medium. Both the impact of porosity and formulation were investigated for theophylline and paracetamol based tablets. The drug substances were either formulated with functionalised calcium carbonate (FCC) with porosities of 45% and 60% or with microcrystalline cellulose (MCC) with porosities of 10% and 25%. The terahertz results reveal that the rate of liquid uptake is clearly influenced by the porosity of the tablets with a faster liquid transport observed for tablets with higher porosity, indicating that the samples exhibit structural similarity in respect to pore connectivity and pore size distribution characteristics in respect to permeability. The swelling of the FCC based tablets is fully controlled by the amount of disintegrant, whereas the liquid uptake is driven by the FCC material and the interparticle pores created during compaction. The MCC based formulations are more complex as the MCC significantly contributes to the overall tablet swelling. An increase in swelling with increasing porosity is observed in these tablets, which indicates that such formulations are performance-limited by their ability to take up liquid. Investigating the effect of the microstructure characteristics on the liquid transport and swelling kinetics is of great importance for reaching the next level of understanding of the drug delivery, and, depending on the surface nature of the pore carrier function, in turn controlling the performance of the drug mainly in respect to dissolution in the body.
Original language | English |
---|---|
Article number | 119380 |
Number of pages | 11 |
Journal | International Journal of Pharmaceutics |
Volume | 584 |
Early online date | 11 May 2020 |
DOIs | |
Publication status | Published - 30 Jun 2020 |
Funding
We would like to thank Johnson Matthey and the U.K. Engineering and Physical Sciences Research Council (EPSRC) for their funding, and Omya International AG for providing the FCC and performing the surface area and porosimetric analyses. The raw data that was used to prepare the figures in this manuscript can be downloaded from the University of Cambridge Open Data Repository at https://doi.org/10.17863/CAM.52591 .
Keywords
- disintegration
- liquid transport
- microstructure
- pharmaceutical tablets
- porous media
- swelling
- terahertz