Simple class of bound entangled states based on the properties of the antisymmetric subspace

Enrico Sindici, Marco Piani

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

We provide a simple construction of bipartite entangled states that are positive under partial transposition, and hence undistillable. The construction makes use of the properties of the projectors onto the symmetric and antisymmetric subspaces of the Hilbert space of two identical systems. The resulting states can be considered as generalizations of the celebrated Werner states.
LanguageEnglish
Article number032319
Number of pages5
JournalPhysical Review A - Atomic, Molecular, and Optical Physics
Volume97
Early online date16 Mar 2018
DOIs
Publication statusE-pub ahead of print - 16 Mar 2018

Fingerprint

projectors
Hilbert space

Keywords

  • quantum information processing
  • entanglement
  • bipartite entanglement

Cite this

@article{25cd4f29991f453faa80fdf43e38b365,
title = "Simple class of bound entangled states based on the properties of the antisymmetric subspace",
abstract = "We provide a simple construction of bipartite entangled states that are positive under partial transposition, and hence undistillable. The construction makes use of the properties of the projectors onto the symmetric and antisymmetric subspaces of the Hilbert space of two identical systems. The resulting states can be considered as generalizations of the celebrated Werner states.",
keywords = "quantum information processing, entanglement, bipartite entanglement",
author = "Enrico Sindici and Marco Piani",
year = "2018",
month = "3",
day = "16",
doi = "10.1103/PhysRevA.97.032319",
language = "English",
volume = "97",
journal = "Physical Review A - Atomic, Molecular, and Optical Physics",
issn = "1050-2947",

}

TY - JOUR

T1 - Simple class of bound entangled states based on the properties of the antisymmetric subspace

AU - Sindici, Enrico

AU - Piani, Marco

PY - 2018/3/16

Y1 - 2018/3/16

N2 - We provide a simple construction of bipartite entangled states that are positive under partial transposition, and hence undistillable. The construction makes use of the properties of the projectors onto the symmetric and antisymmetric subspaces of the Hilbert space of two identical systems. The resulting states can be considered as generalizations of the celebrated Werner states.

AB - We provide a simple construction of bipartite entangled states that are positive under partial transposition, and hence undistillable. The construction makes use of the properties of the projectors onto the symmetric and antisymmetric subspaces of the Hilbert space of two identical systems. The resulting states can be considered as generalizations of the celebrated Werner states.

KW - quantum information processing

KW - entanglement

KW - bipartite entanglement

UR - https://journals.aps.org/pra/abstract/10.1103/PhysRevA.97.032319

UR - https://arxiv.org/abs/1708.06595

U2 - 10.1103/PhysRevA.97.032319

DO - 10.1103/PhysRevA.97.032319

M3 - Article

VL - 97

JO - Physical Review A - Atomic, Molecular, and Optical Physics

T2 - Physical Review A - Atomic, Molecular, and Optical Physics

JF - Physical Review A - Atomic, Molecular, and Optical Physics

SN - 1050-2947

M1 - 032319

ER -