Research output per year
Research output per year
Craig Berry, Graeme West, Stephen McArthur, Anna Rudge
Research output: Chapter in Book/Report/Conference proceeding › Conference contribution book
One of the life-limiting components of an Advanced Gas cooled Reactor (AGR) is its graphite core. The bricks present in the core undergo radiolytic oxidation throughout their lifetime which causes graphite weight loss and irradiation which can result in some of the bricks developing cracks. Understanding the nature and extent of brick cracking within the core is key to ensuring continued and extended operation of the AGR fleet. A semi-supervised machine learning classification algorithm is proposed as a method for improving the detection of cracked graphite bricks, by combining the labels derived from infrequent, detailed inspections of the core, with unlabeled, more frequent monitoring measurements taken during refueling operations. Semi-supervised machine learning, which is an emerging field in nuclear power condition monitoring, is the combination of ideas from both supervised and unsupervised machine learning whereby the data that is used to train the algorithm is a combination of labeled and unlabeled data. This paper introduces the initial research that has been undertaken in creating a semi-supervised self-training algorithm to detect the presence of graphite brick cracks and then proceeds to show that there is an improvement in the classification of graphite bricks using a semi-supervised machine learning classifier compared to supervised machine learning classifiers. This improved classification performance is encouraging as it does not require time consuming and costly human analysis to obtain extra learning information from available data.
Original language | English |
---|---|
Title of host publication | 10th International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies, NPIC and HMIT 2017 |
Editors | American Nuclear Society |
Place of Publication | Red Hook, NY |
Pages | 77-86 |
Number of pages | 10 |
Volume | 1 |
ISBN (Electronic) | 9781510851160 |
Publication status | Published - 15 Jun 2017 |
Event | 10th International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies, NPIC and HMIT 2017 - Hyatt Regency, San Francisco, United States Duration: 11 Jun 2017 → 15 Jun 2017 http://npic-hmit2017.org/ |
Conference | 10th International Topical Meeting on Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies, NPIC and HMIT 2017 |
---|---|
Abbreviated title | NPIC and HMIT 2017 |
Country/Territory | United States |
City | San Francisco |
Period | 11/06/17 → 15/06/17 |
Internet address |
Research output: Contribution to conference › Paper › peer-review