Self-emergence of robust solitons in a microcavity

Maxwell Rowley, Pierre-Henry Hanzard, Antonio Cutrona, Hualong Bao, Sai T. Chu, Brent E. Little, Roberto Morandotti, David J. Moss, Gian-Luca Oppo, Juan Sebastian Totero Gongora, Marco Peccianti, Alessia Pasquazi

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
3 Downloads (Pure)

Abstract

In many disciplines, states that emerge in open systems far from equilibrium are determined by a few global parameters 1,2. These states can often mimic thermodynamic equilibrium, a classic example being the oscillation threshold of a laser 3 that resembles a phase transition in condensed matter. However, many classes of states cannot form spontaneously in dissipative systems, and this is the case for cavity solitons 2 that generally need to be induced by external perturbations, as in the case of optical memories 4,5. In the past decade, these highly localized states have enabled important advancements in microresonator-based optical frequency combs 6,7. However, the very advantages that make cavity solitons attractive for memories—their inability to form spontaneously from noise—have created fundamental challenges. As sources, microcombs require spontaneous and reliable initiation into a desired state that is intrinsically robust 8–20. Here we show that the slow non-linearities of a free-running microresonator-filtered fibre laser 21 can transform temporal cavity solitons into the system’s dominant attractor. This phenomenon leads to reliable self-starting oscillation of microcavity solitons that are naturally robust to perturbations, recovering spontaneously even after complete disruption. These emerge repeatably and controllably into a large region of the global system parameter space in which specific states, highly stable over long timeframes, can be achieved.

Original languageEnglish
Pages (from-to)303-309
Number of pages7
JournalNature
Volume608
Issue number7922
Early online date10 Aug 2022
DOIs
Publication statusPublished - 11 Aug 2022

Keywords

  • cavity solitons
  • self-starting oscillation
  • spontaneous recovery

Fingerprint

Dive into the research topics of 'Self-emergence of robust solitons in a microcavity'. Together they form a unique fingerprint.

Cite this