Research output per year
Research output per year
Valeria Castelletto, Jani Seitsonen, Kunal M. Tewari, Abshar Hasan, Robert M. Edkins, Janne Ruokolainen, Lalit M. Pandey, Ian W. Hamley, King Hang Aaron Lau
Research output: Contribution to journal › Letter › peer-review
Peptoids are biofunctional N-substituted glycine peptidomimics. Their self-assembly is of fundamental interest because they demonstrate alternatives to conventional peptide structures based on backbone chirality and beta-sheet hydrogen bonding. The search for self-assembling, water-soluble "minimal" sequences, be they peptide or peptidomimic, is a further challenge. Such sequences are highly desired for their compatibility with biomacromolecules and convenient synthesis for broader application. We report the self-assembly of a set of trimeric, water-soluble α-peptoids that exhibit a relatively low critical aggregation concentration (CAC ∼0.3 wt %). Cryo-EM and angle-resolved DLS show different sequence-dependent morphologies, namely uniform ca. 6 nm wide nanofibers, sheets, and clusters of globular assemblies. Absorbance and fluorescence spectroscopies indicate unique phenyl environments for π-interactions in the highly ordered nanofibers. Assembly of our peptoids takes place when the sequences are fully ionized, representing a departure from superficially similar amyloid-type hydrogen-bonded peptide nanostructures and expanding the horizons of assembly for sequence-specific bio- and biomimetic macromolecules.
Original language | English |
---|---|
Pages (from-to) | 494-499 |
Number of pages | 6 |
Journal | ACS Macro Letters |
Volume | 9 |
Issue number | 4 |
Early online date | 19 Mar 2020 |
DOIs | |
Publication status | Published - 21 Apr 2020 |
Research output: Contribution to journal › Article › peer-review