Search for multimessenger sources of gravitational waves and high-energy neutrinos with advanced LIGO during its first observing run, ANTARES, and IceCube

A. Albert, S. V. Angelova, R. Birney, N. A. Lockerbie, S. Reid, IceCube Collaboration, Antares Collaboration, The LIGO Scientific Collaboration, The Virgo Collaboration

Research output: Contribution to journalArticlepeer-review

30 Citations (Scopus)
14 Downloads (Pure)

Abstract

Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the outflow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the Antares and IceCube neutrino observatories from the same time period. We focused on candidate events whose astrophysical origins could not be determined from a single messenger. We found no significant coincident candidate, which we used to constrain the rate density of astrophysical sources dependent on their gravitational-wave and neutrino emission processes.
Original languageEnglish
Article number134
Pages (from-to)1-16
Number of pages16
JournalAstrophysical Journal
Volume870
Issue number2
DOIs
Publication statusPublished - 16 Jan 2019

Keywords

  • gravitational waves
  • neutrinos

Fingerprint

Dive into the research topics of 'Search for multimessenger sources of gravitational waves and high-energy neutrinos with advanced LIGO during its first observing run, ANTARES, and IceCube'. Together they form a unique fingerprint.

Cite this