Abstract
We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-Wave Observatory and Virgo detectors. Five months of data were collected during the Laser Interferometer Gravitational-Wave Observatory's S5 and Virgo's VSR1 science runs. The search focused on signals from binary mergers with a total mass between 2 and 35M(circle dot). No gravitational waves are identified. The cumulative 90confidence upper limits on the rate of compact binary coalescence are calculated for nonspinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8: 7 X 10(-3) yr(-1) L-10(-1), 2.2 X 10(-3) yr(-1) L-10(-1), and 4.4 X 10(-4) yr(-1) L-10(-1), respectively, where L-10 is 10(10) times the blue solar luminosity. These upper limits are compared with astrophysical expectations.
Original language | English |
---|---|
Pages (from-to) | 102001 |
Number of pages | 11 |
Journal | Physical Review D |
Volume | 82 |
Issue number | 10 |
DOIs | |
Publication status | Published - 5 Nov 2010 |
Keywords
- catalog
- forms
- compact binary coalescence
- gravitational waves