Schwarz preconditioning for high order edge element discretizations of the time-harmonic Maxwell's equations

Marcella Bonazzoli, Victorita Dolean, Richard Pasquetti, Francesca Rapetti

Research output: Chapter in Book/Report/Conference proceedingConference contribution book

1 Downloads (Pure)

Abstract

We focus on high order edge element approximations of waveguide problems. For the associated linear systems, we analyze the impact of two Schwarz preconditioners, the Optimized Additive Schwarz (OAS) and the Optimized Restricted Additive Schwarz (ORAS), on the convergence of the iterative solver.

Original languageEnglish
Title of host publicationDomain Decomposition Methods in Science and Engineering XXIII
EditorsChang-Ock Lee, Xiao-Chuan Cai, Victoria Hansford, Hyea Hyun Kim, Axel Klawonn, Eun-Jae Park, Olof B. Widlund
Place of PublicationBerlin
PublisherSpringer-Verlag
Pages117-124
Number of pages8
ISBN (Print)9783319523880, 9783319523897
DOIs
Publication statusPublished - 18 Mar 2017
Event23rd International Conference on Domain Decomposition Methods, DD23 - Jeju Island, Korea, Republic of
Duration: 6 Jul 201510 Jul 2015

Publication series

NameLecture Notes in Computational Science and Engineering
Volume116
ISSN (Print)1439-7358

Conference

Conference23rd International Conference on Domain Decomposition Methods, DD23
CountryKorea, Republic of
City Jeju Island
Period6/07/1510/07/15

    Fingerprint

Keywords

  • electromagnetic wave propagation
  • time-harmonic models
  • high frequency
  • Maxwell’s equations

Cite this

Bonazzoli, M., Dolean, V., Pasquetti, R., & Rapetti, F. (2017). Schwarz preconditioning for high order edge element discretizations of the time-harmonic Maxwell's equations. In C-O. Lee, X-C. Cai, V. Hansford, H. H. Kim, A. Klawonn, E-J. Park, & O. B. Widlund (Eds.), Domain Decomposition Methods in Science and Engineering XXIII (pp. 117-124). (Lecture Notes in Computational Science and Engineering; Vol. 116). Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-319-52389-7_10