Schwarz preconditioning for high order edge element discretizations of the time-harmonic Maxwell's equations

Marcella Bonazzoli, Victorita Dolean, Richard Pasquetti, Francesca Rapetti

Research output: Chapter in Book/Report/Conference proceedingConference contribution book

Abstract

We focus on high order edge element approximations of waveguide problems. For the associated linear systems, we analyze the impact of two Schwarz preconditioners, the Optimized Additive Schwarz (OAS) and the Optimized Restricted Additive Schwarz (ORAS), on the convergence of the iterative solver.

LanguageEnglish
Title of host publicationDomain Decomposition Methods in Science and Engineering XXIII
EditorsChang-Ock Lee, Xiao-Chuan Cai, Victoria Hansford, Hyea Hyun Kim, Axel Klawonn, Eun-Jae Park, Olof B. Widlund
Place of PublicationBerlin
PublisherSpringer-Verlag
Pages117-124
Number of pages8
ISBN (Print)9783319523880, 9783319523897
DOIs
Publication statusPublished - 18 Mar 2017
Event23rd International Conference on Domain Decomposition Methods, DD23 - Jeju Island, Korea, Republic of
Duration: 6 Jul 201510 Jul 2015

Publication series

NameLecture Notes in Computational Science and Engineering
Volume116
ISSN (Print)1439-7358

Conference

Conference23rd International Conference on Domain Decomposition Methods, DD23
CountryKorea, Republic of
City Jeju Island
Period6/07/1510/07/15

Fingerprint

Additive Schwarz
Edge Elements
Maxwell equations
Preconditioning
Maxwell's equations
Linear systems
Waveguides
Harmonic
Discretization
Higher Order
Iterative Solver
Preconditioner
Waveguide
Linear Systems
Approximation

Keywords

  • electromagnetic wave propagation
  • time-harmonic models
  • high frequency
  • Maxwell’s equations

Cite this

Bonazzoli, M., Dolean, V., Pasquetti, R., & Rapetti, F. (2017). Schwarz preconditioning for high order edge element discretizations of the time-harmonic Maxwell's equations. In C-O. Lee, X-C. Cai, V. Hansford, H. H. Kim, A. Klawonn, E-J. Park, & O. B. Widlund (Eds.), Domain Decomposition Methods in Science and Engineering XXIII (pp. 117-124). (Lecture Notes in Computational Science and Engineering; Vol. 116). Berlin: Springer-Verlag. https://doi.org/10.1007/978-3-319-52389-7_10
Bonazzoli, Marcella ; Dolean, Victorita ; Pasquetti, Richard ; Rapetti, Francesca. / Schwarz preconditioning for high order edge element discretizations of the time-harmonic Maxwell's equations. Domain Decomposition Methods in Science and Engineering XXIII. editor / Chang-Ock Lee ; Xiao-Chuan Cai ; Victoria Hansford ; Hyea Hyun Kim ; Axel Klawonn ; Eun-Jae Park ; Olof B. Widlund. Berlin : Springer-Verlag, 2017. pp. 117-124 (Lecture Notes in Computational Science and Engineering).
@inproceedings{1a9abd8a054240ec84e2a1b7b4fe6a44,
title = "Schwarz preconditioning for high order edge element discretizations of the time-harmonic Maxwell's equations",
abstract = "We focus on high order edge element approximations of waveguide problems. For the associated linear systems, we analyze the impact of two Schwarz preconditioners, the Optimized Additive Schwarz (OAS) and the Optimized Restricted Additive Schwarz (ORAS), on the convergence of the iterative solver.",
keywords = "electromagnetic wave propagation, time-harmonic models, high frequency, Maxwell’s equations",
author = "Marcella Bonazzoli and Victorita Dolean and Richard Pasquetti and Francesca Rapetti",
year = "2017",
month = "3",
day = "18",
doi = "10.1007/978-3-319-52389-7_10",
language = "English",
isbn = "9783319523880",
series = "Lecture Notes in Computational Science and Engineering",
publisher = "Springer-Verlag",
pages = "117--124",
editor = "Chang-Ock Lee and Xiao-Chuan Cai and Victoria Hansford and Kim, {Hyea Hyun} and Axel Klawonn and Eun-Jae Park and Widlund, {Olof B.}",
booktitle = "Domain Decomposition Methods in Science and Engineering XXIII",

}

Bonazzoli, M, Dolean, V, Pasquetti, R & Rapetti, F 2017, Schwarz preconditioning for high order edge element discretizations of the time-harmonic Maxwell's equations. in C-O Lee, X-C Cai, V Hansford, HH Kim, A Klawonn, E-J Park & OB Widlund (eds), Domain Decomposition Methods in Science and Engineering XXIII. Lecture Notes in Computational Science and Engineering, vol. 116, Springer-Verlag, Berlin, pp. 117-124, 23rd International Conference on Domain Decomposition Methods, DD23, Jeju Island, Korea, Republic of, 6/07/15. https://doi.org/10.1007/978-3-319-52389-7_10

Schwarz preconditioning for high order edge element discretizations of the time-harmonic Maxwell's equations. / Bonazzoli, Marcella; Dolean, Victorita; Pasquetti, Richard; Rapetti, Francesca.

Domain Decomposition Methods in Science and Engineering XXIII. ed. / Chang-Ock Lee; Xiao-Chuan Cai; Victoria Hansford; Hyea Hyun Kim; Axel Klawonn; Eun-Jae Park; Olof B. Widlund. Berlin : Springer-Verlag, 2017. p. 117-124 (Lecture Notes in Computational Science and Engineering; Vol. 116).

Research output: Chapter in Book/Report/Conference proceedingConference contribution book

TY - GEN

T1 - Schwarz preconditioning for high order edge element discretizations of the time-harmonic Maxwell's equations

AU - Bonazzoli, Marcella

AU - Dolean, Victorita

AU - Pasquetti, Richard

AU - Rapetti, Francesca

PY - 2017/3/18

Y1 - 2017/3/18

N2 - We focus on high order edge element approximations of waveguide problems. For the associated linear systems, we analyze the impact of two Schwarz preconditioners, the Optimized Additive Schwarz (OAS) and the Optimized Restricted Additive Schwarz (ORAS), on the convergence of the iterative solver.

AB - We focus on high order edge element approximations of waveguide problems. For the associated linear systems, we analyze the impact of two Schwarz preconditioners, the Optimized Additive Schwarz (OAS) and the Optimized Restricted Additive Schwarz (ORAS), on the convergence of the iterative solver.

KW - electromagnetic wave propagation

KW - time-harmonic models

KW - high frequency

KW - Maxwell’s equations

U2 - 10.1007/978-3-319-52389-7_10

DO - 10.1007/978-3-319-52389-7_10

M3 - Conference contribution book

SN - 9783319523880

SN - 9783319523897

T3 - Lecture Notes in Computational Science and Engineering

SP - 117

EP - 124

BT - Domain Decomposition Methods in Science and Engineering XXIII

A2 - Lee, Chang-Ock

A2 - Cai, Xiao-Chuan

A2 - Hansford, Victoria

A2 - Kim, Hyea Hyun

A2 - Klawonn, Axel

A2 - Park, Eun-Jae

A2 - Widlund, Olof B.

PB - Springer-Verlag

CY - Berlin

ER -

Bonazzoli M, Dolean V, Pasquetti R, Rapetti F. Schwarz preconditioning for high order edge element discretizations of the time-harmonic Maxwell's equations. In Lee C-O, Cai X-C, Hansford V, Kim HH, Klawonn A, Park E-J, Widlund OB, editors, Domain Decomposition Methods in Science and Engineering XXIII. Berlin: Springer-Verlag. 2017. p. 117-124. (Lecture Notes in Computational Science and Engineering). https://doi.org/10.1007/978-3-319-52389-7_10