Traditional radar sensors used for surveillance rely on monostatic radar principles. However, recently the use of remote radio frequency telescopes as bistatic receivers represents an interesting way to reuse existing facilities while providing additional information to improve tracking accuracy. In this paper we study the benefits of using such a system for the task of manoeuvre detection in satellites in LEO and MEO. We investigate the conditions in which a multistatic radar is advantageous for this purpose, and show concrete results based on simulated data. Moreover, we propose novel manoeuvre detection methods, and compare their accuracy to methods found in the literature. A more general way of assessing the accuracy of these manoeuvre detection methods is also proposed, with the aim of taking into account that the parameters of the manoeuvre that actually takes place also have an effect on the accuracy. These can be split into optimal control based methods, and statistical methods. We found the addition of multistatic radar to allow considerable improvement in the accuracy of the manoeuvre detection process, an improvement that is shown to be greater the greater the baseline, i.e., the distance of the receiver to the transmitter. Furthermore, the manoeuvre detection methods that accurately model the uncertainty in the measurements were found to be the most accurate.
Original languageEnglish
Article number36
Number of pages25
JournalJournal of the Astronautical Sciences
Issue number5
Early online date14 Sept 2023
Publication statusPublished - 14 Sept 2023


  • multistatic radar
  • bistatic radar
  • satellite manoeuvre detection
  • space surveillance


Dive into the research topics of 'Satellite manoeuvre detection with multistatic radar'. Together they form a unique fingerprint.

Cite this