Role of magnetic field evolution on filamentary structure formation in intense laser-foil interactions

M. King, N. M. H. Butler, R. Wilson, R. Capdessus, R. J. Gray, H. Powell, R. Dance, H. Padda, B. Gonzalez-Izquierdo, D. R. Rusby, N. P. Dover, G. Hicks, O. Ettlinger, C. Scullion, D. C. Carroll, Z. Najmudin, M. Borghesi, D. Neely, P. McKenna

Research output: Contribution to journalArticle

Abstract

Filamentary structures can form within the beam of protons accelerated during the interaction of an intense laser pulse with an ultrathin foil target. Such behaviour is shown to be dependent upon the formation time of quasi-static magnetic field structures throughout the target volume and the extent of the rear surface proton expansion over the same period. This is observed via both numerical and experimental investigations. By controlling the intensity profile of the laser drive, via the use of two temporally separated pulses, both the initial rear surface proton expansion and magnetic field formation time can be varied, resulting in modification to the degree of filamentary structure present within the laser-driven proton beam.

LanguageEnglish
Article numbere14
Number of pages8
JournalHigh Power Laser Science and Engineering
Volume7
DOIs
Publication statusPublished - 13 Mar 2019

Fingerprint

Metal foil
Protons
foils
Magnetic fields
protons
Lasers
magnetic fields
lasers
expansion
Proton beams
interactions
pulses
proton beams
Laser pulses
profiles

Keywords

  • intense laser pulses
  • ultra thin foil target
  • proton beam
  • laser-plasma
  • ion acceleration
  • instabilities

Cite this

King, M. ; Butler, N. M. H. ; Wilson, R. ; Capdessus, R. ; Gray, R. J. ; Powell, H. ; Dance, R. ; Padda, H. ; Gonzalez-Izquierdo, B. ; Rusby, D. R. ; Dover, N. P. ; Hicks, G. ; Ettlinger, O. ; Scullion, C. ; Carroll, D. C. ; Najmudin, Z. ; Borghesi, M. ; Neely, D. ; McKenna, P. / Role of magnetic field evolution on filamentary structure formation in intense laser-foil interactions. In: High Power Laser Science and Engineering. 2019 ; Vol. 7.
@article{6ce34f7b5bc44c4aaadc05ce5f24d7a1,
title = "Role of magnetic field evolution on filamentary structure formation in intense laser-foil interactions",
abstract = "Filamentary structures can form within the beam of protons accelerated during the interaction of an intense laser pulse with an ultrathin foil target. Such behaviour is shown to be dependent upon the formation time of quasi-static magnetic field structures throughout the target volume and the extent of the rear surface proton expansion over the same period. This is observed via both numerical and experimental investigations. By controlling the intensity profile of the laser drive, via the use of two temporally separated pulses, both the initial rear surface proton expansion and magnetic field formation time can be varied, resulting in modification to the degree of filamentary structure present within the laser-driven proton beam.",
keywords = "intense laser pulses, ultra thin foil target, proton beam, laser-plasma, ion acceleration, instabilities",
author = "M. King and Butler, {N. M. H.} and R. Wilson and R. Capdessus and Gray, {R. J.} and H. Powell and R. Dance and H. Padda and B. Gonzalez-Izquierdo and Rusby, {D. R.} and Dover, {N. P.} and G. Hicks and O. Ettlinger and C. Scullion and Carroll, {D. C.} and Z. Najmudin and M. Borghesi and D. Neely and P. McKenna",
year = "2019",
month = "3",
day = "13",
doi = "10.1017/hpl.2018.75",
language = "English",
volume = "7",
journal = "High Power Laser Science and Engineering",
issn = "2095-4719",

}

King, M, Butler, NMH, Wilson, R, Capdessus, R, Gray, RJ, Powell, H, Dance, R, Padda, H, Gonzalez-Izquierdo, B, Rusby, DR, Dover, NP, Hicks, G, Ettlinger, O, Scullion, C, Carroll, DC, Najmudin, Z, Borghesi, M, Neely, D & McKenna, P 2019, 'Role of magnetic field evolution on filamentary structure formation in intense laser-foil interactions' High Power Laser Science and Engineering, vol. 7, e14. https://doi.org/10.1017/hpl.2018.75

Role of magnetic field evolution on filamentary structure formation in intense laser-foil interactions. / King, M.; Butler, N. M. H.; Wilson, R.; Capdessus, R.; Gray, R. J.; Powell, H.; Dance, R.; Padda, H.; Gonzalez-Izquierdo, B.; Rusby, D. R.; Dover, N. P.; Hicks, G.; Ettlinger, O.; Scullion, C.; Carroll, D. C.; Najmudin, Z.; Borghesi, M.; Neely, D.; McKenna, P.

In: High Power Laser Science and Engineering, Vol. 7, e14, 13.03.2019.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Role of magnetic field evolution on filamentary structure formation in intense laser-foil interactions

AU - King, M.

AU - Butler, N. M. H.

AU - Wilson, R.

AU - Capdessus, R.

AU - Gray, R. J.

AU - Powell, H.

AU - Dance, R.

AU - Padda, H.

AU - Gonzalez-Izquierdo, B.

AU - Rusby, D. R.

AU - Dover, N. P.

AU - Hicks, G.

AU - Ettlinger, O.

AU - Scullion, C.

AU - Carroll, D. C.

AU - Najmudin, Z.

AU - Borghesi, M.

AU - Neely, D.

AU - McKenna, P.

PY - 2019/3/13

Y1 - 2019/3/13

N2 - Filamentary structures can form within the beam of protons accelerated during the interaction of an intense laser pulse with an ultrathin foil target. Such behaviour is shown to be dependent upon the formation time of quasi-static magnetic field structures throughout the target volume and the extent of the rear surface proton expansion over the same period. This is observed via both numerical and experimental investigations. By controlling the intensity profile of the laser drive, via the use of two temporally separated pulses, both the initial rear surface proton expansion and magnetic field formation time can be varied, resulting in modification to the degree of filamentary structure present within the laser-driven proton beam.

AB - Filamentary structures can form within the beam of protons accelerated during the interaction of an intense laser pulse with an ultrathin foil target. Such behaviour is shown to be dependent upon the formation time of quasi-static magnetic field structures throughout the target volume and the extent of the rear surface proton expansion over the same period. This is observed via both numerical and experimental investigations. By controlling the intensity profile of the laser drive, via the use of two temporally separated pulses, both the initial rear surface proton expansion and magnetic field formation time can be varied, resulting in modification to the degree of filamentary structure present within the laser-driven proton beam.

KW - intense laser pulses

KW - ultra thin foil target

KW - proton beam

KW - laser-plasma

KW - ion acceleration

KW - instabilities

U2 - 10.1017/hpl.2018.75

DO - 10.1017/hpl.2018.75

M3 - Article

VL - 7

JO - High Power Laser Science and Engineering

T2 - High Power Laser Science and Engineering

JF - High Power Laser Science and Engineering

SN - 2095-4719

M1 - e14

ER -