Robust and generic control of full-bridge modular multilevel converter high-voltage DC transmission systems

Grain Philip Adam, Innocent Ewean Davidson

Research output: Contribution to journalArticle

70 Citations (Scopus)

Abstract

This paper presents the theoretical basis of the control strategy that allows the cell capacitor voltage regulation of the full-bridge modular multilevel converter (FB-MMC) to be controlled independent of its dc link voltage. The presented control strategy permits operation with reduced dc link voltage during permanent pole-to-ground dc fault, and controlled discharge and recharge of the HVDC links during shutdown and restart following clearance of temporary pole-to-pole dc faults. Additionally, it allows voltage source converter based HVDC links that employ FB-MMC to be operated with both positive and negative dc negative dc link voltages. This feature is well suited for hybrid HVDC networks, where the voltage source converters are operated alongside the line commutating current source converters, without any compromise to the power reversal at any terminals. The usefulness of the presented control strategy is demonstrated on full-scale model of HVDC link that uses FB-MMC with 101 cells per arm, considering the cases of pole-to-ground and pole-to-pole dc faults.
LanguageEnglish
Number of pages8
JournalIEEE Transactions on Power Delivery
Early online date6 Feb 2015
DOIs
Publication statusPublished - 2015

Fingerprint

HVDC power transmission
Poles
Electric potential
Voltage control
Capacitors

Keywords

  • voltage control
  • power conversion
  • HVDC transmission
  • equations
  • full and half bridge modular multilevel converter

Cite this

@article{9e72eacdd2654f8a9c869df33f7e66c0,
title = "Robust and generic control of full-bridge modular multilevel converter high-voltage DC transmission systems",
abstract = "This paper presents the theoretical basis of the control strategy that allows the cell capacitor voltage regulation of the full-bridge modular multilevel converter (FB-MMC) to be controlled independent of its dc link voltage. The presented control strategy permits operation with reduced dc link voltage during permanent pole-to-ground dc fault, and controlled discharge and recharge of the HVDC links during shutdown and restart following clearance of temporary pole-to-pole dc faults. Additionally, it allows voltage source converter based HVDC links that employ FB-MMC to be operated with both positive and negative dc negative dc link voltages. This feature is well suited for hybrid HVDC networks, where the voltage source converters are operated alongside the line commutating current source converters, without any compromise to the power reversal at any terminals. The usefulness of the presented control strategy is demonstrated on full-scale model of HVDC link that uses FB-MMC with 101 cells per arm, considering the cases of pole-to-ground and pole-to-pole dc faults.",
keywords = "voltage control, power conversion, HVDC transmission, equations, full and half bridge modular multilevel converter",
author = "Adam, {Grain Philip} and Davidson, {Innocent Ewean}",
note = "(c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.",
year = "2015",
doi = "10.1109/TPWRD.2015.2394387",
language = "English",
journal = "IEEE Transactions on Power Delivery",
issn = "0885-8977",

}

TY - JOUR

T1 - Robust and generic control of full-bridge modular multilevel converter high-voltage DC transmission systems

AU - Adam, Grain Philip

AU - Davidson, Innocent Ewean

N1 - (c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

PY - 2015

Y1 - 2015

N2 - This paper presents the theoretical basis of the control strategy that allows the cell capacitor voltage regulation of the full-bridge modular multilevel converter (FB-MMC) to be controlled independent of its dc link voltage. The presented control strategy permits operation with reduced dc link voltage during permanent pole-to-ground dc fault, and controlled discharge and recharge of the HVDC links during shutdown and restart following clearance of temporary pole-to-pole dc faults. Additionally, it allows voltage source converter based HVDC links that employ FB-MMC to be operated with both positive and negative dc negative dc link voltages. This feature is well suited for hybrid HVDC networks, where the voltage source converters are operated alongside the line commutating current source converters, without any compromise to the power reversal at any terminals. The usefulness of the presented control strategy is demonstrated on full-scale model of HVDC link that uses FB-MMC with 101 cells per arm, considering the cases of pole-to-ground and pole-to-pole dc faults.

AB - This paper presents the theoretical basis of the control strategy that allows the cell capacitor voltage regulation of the full-bridge modular multilevel converter (FB-MMC) to be controlled independent of its dc link voltage. The presented control strategy permits operation with reduced dc link voltage during permanent pole-to-ground dc fault, and controlled discharge and recharge of the HVDC links during shutdown and restart following clearance of temporary pole-to-pole dc faults. Additionally, it allows voltage source converter based HVDC links that employ FB-MMC to be operated with both positive and negative dc negative dc link voltages. This feature is well suited for hybrid HVDC networks, where the voltage source converters are operated alongside the line commutating current source converters, without any compromise to the power reversal at any terminals. The usefulness of the presented control strategy is demonstrated on full-scale model of HVDC link that uses FB-MMC with 101 cells per arm, considering the cases of pole-to-ground and pole-to-pole dc faults.

KW - voltage control

KW - power conversion

KW - HVDC transmission

KW - equations

KW - full and half bridge modular multilevel converter

U2 - 10.1109/TPWRD.2015.2394387

DO - 10.1109/TPWRD.2015.2394387

M3 - Article

JO - IEEE Transactions on Power Delivery

T2 - IEEE Transactions on Power Delivery

JF - IEEE Transactions on Power Delivery

SN - 0885-8977

ER -