Projects per year
Abstract
A number of algorithms capable of iteratively calculating a polynomial matrix eigenvalue decomposition (PEVD) have been introduced. The PEVD is an extension of the ordinary EVD to polynomial matrices and will diagonalise a parahermitian matrix using paraunitary operations. This paper introduces a novel restricted update approach for the sequential matrix diagonalisation (SMD) PEVD algorithm, which can be implemented with minimal impact on algorithm accuracy and convergence. We demonstrate that by using the proposed restricted update SMD (RU-SMD) algorithm instead of SMD, PEVD complexity and execution time can be significantly reduced. This reduction impacts on a number of broadband multichannel problems.
Original language | English |
---|---|
Number of pages | 5 |
Publication status | Published - 10 Dec 2017 |
Event | IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing - Curacao, Netherlands Antilles Duration: 10 Dec 2017 → 13 Dec 2017 http://www.cs.huji.ac.il/conferences/CAMSAP17/ |
Conference
Conference | IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing |
---|---|
Abbreviated title | CAMSAP |
Country/Territory | Netherlands Antilles |
City | Curacao |
Period | 10/12/17 → 13/12/17 |
Internet address |
Keywords
- polynomial matrix eigenvalue decompositions
- PEVD
- polynomial matrices
- parahermitian matrices
- broadband multichannel problems
Fingerprint
Dive into the research topics of 'Restricted update sequential matrix diagonalisation for parahermitian matrices'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Signal Processing Solutions for the Networked Battlespace
EPSRC (Engineering and Physical Sciences Research Council)
1/04/13 → 31/03/18
Project: Research