Response-only method for damage detection of beam-like structures using high accuracy frequencies with auxiliary mass spatial probing

Shuncong Zhong, S. Olutunde Oyadiji, Kang Ding

Research output: Contribution to journalArticle

54 Citations (Scopus)

Abstract

This paper proposes a new approach based on auxiliary mass spatial probing using spectral centre correction method (SCCM), to provide a simple solution for damage detection by just using the response time history of beam-like structures. The natural frequencies of a damaged beam with a traversing auxiliary mass change due to change in the inertia of the beam as the auxiliary mass is traversed along the beam, as well as the point-to-point variations in the flexibility of the beam. Therefore the auxiliary mass can enhance the effects of the crack on the dynamics of the beam and, therefore, facilitate the identification and location of damage in the beam. That is, the auxiliary mass can be used to probe the dynamic characteristic of the beam by traversing the mass from one end of the beam to the other. However, it is impossible to obtain accurate modal frequencies by the direct operation of the fast Fourier transform (FFT) of the response data of the structure because the frequency spectrum can be only calculated from limited sampled time data which results in the well-known leakage effect. SCCM is identical to the energy centrobaric correction method (ECCM) which is a practical and effective method used in rotating mechanical fault diagnosis and which resolves the shortcoming of FFT and can provide high accuracy estimate of frequency, amplitude and phase. In the present work, the modal responses of damaged simply supported beams with auxiliary mass are computed using the finite element method (FEM). The graphical plots of the natural frequencies calculated by SCCM versus axial location of auxiliary mass are obtained. However, it is difficult to locate the crack directly from the curve of natural frequencies. A simple and fast method, the derivatives of natural frequency curve, is proposed in the paper which can provide crack information for damage detection of beam-like structures. The efficiency and practicability of the proposed method is illustrated via numerical simulation. For real cases, experimental noise is expected to corrupt the response data and, ultimately, the natural frequencies of beam-like structures. Therefore, the response data with a normally distributed random noise is also studied. Also, the effects of crack depth, auxiliary mass and damping ratios on the proposed method are investigated. From the simulated results, the efficiency and robustness of the proposed method is demonstrated. The results show that the proposed method has low computational cost and high precision.
Original languageEnglish
Pages (from-to)1075-1099
Number of pages25
JournalJournal of Sound and Vibration
Volume311
Issue number3-5
Early online date21 Dec 2007
DOIs
Publication statusPublished - 8 Apr 2008
Externally publishedYes

Fingerprint

Damage detection
Natural frequencies
damage
Cracks
Fast Fourier transforms
resonant frequencies
cracks
Failure analysis
Damping
Derivatives
Finite element method
Computer simulation
modal response
curves
Costs
random noise
inertia
mass ratios
dynamic characteristics
flexibility

Keywords

  • damage detection
  • dynamic models
  • fast fourier transforms
  • probes
  • structural analysis

Cite this

@article{b8729c39957f4271a554d18839063ff9,
title = "Response-only method for damage detection of beam-like structures using high accuracy frequencies with auxiliary mass spatial probing",
abstract = "This paper proposes a new approach based on auxiliary mass spatial probing using spectral centre correction method (SCCM), to provide a simple solution for damage detection by just using the response time history of beam-like structures. The natural frequencies of a damaged beam with a traversing auxiliary mass change due to change in the inertia of the beam as the auxiliary mass is traversed along the beam, as well as the point-to-point variations in the flexibility of the beam. Therefore the auxiliary mass can enhance the effects of the crack on the dynamics of the beam and, therefore, facilitate the identification and location of damage in the beam. That is, the auxiliary mass can be used to probe the dynamic characteristic of the beam by traversing the mass from one end of the beam to the other. However, it is impossible to obtain accurate modal frequencies by the direct operation of the fast Fourier transform (FFT) of the response data of the structure because the frequency spectrum can be only calculated from limited sampled time data which results in the well-known leakage effect. SCCM is identical to the energy centrobaric correction method (ECCM) which is a practical and effective method used in rotating mechanical fault diagnosis and which resolves the shortcoming of FFT and can provide high accuracy estimate of frequency, amplitude and phase. In the present work, the modal responses of damaged simply supported beams with auxiliary mass are computed using the finite element method (FEM). The graphical plots of the natural frequencies calculated by SCCM versus axial location of auxiliary mass are obtained. However, it is difficult to locate the crack directly from the curve of natural frequencies. A simple and fast method, the derivatives of natural frequency curve, is proposed in the paper which can provide crack information for damage detection of beam-like structures. The efficiency and practicability of the proposed method is illustrated via numerical simulation. For real cases, experimental noise is expected to corrupt the response data and, ultimately, the natural frequencies of beam-like structures. Therefore, the response data with a normally distributed random noise is also studied. Also, the effects of crack depth, auxiliary mass and damping ratios on the proposed method are investigated. From the simulated results, the efficiency and robustness of the proposed method is demonstrated. The results show that the proposed method has low computational cost and high precision.",
keywords = "damage detection, dynamic models, fast fourier transforms, probes, structural analysis",
author = "Shuncong Zhong and Oyadiji, {S. Olutunde} and Kang Ding",
year = "2008",
month = "4",
day = "8",
doi = "10.1016/j.jsv.2007.10.004",
language = "English",
volume = "311",
pages = "1075--1099",
journal = "Journal of Sound and Vibration",
issn = "0022-460X",
number = "3-5",

}

Response-only method for damage detection of beam-like structures using high accuracy frequencies with auxiliary mass spatial probing. / Zhong, Shuncong; Oyadiji, S. Olutunde; Ding, Kang.

In: Journal of Sound and Vibration, Vol. 311, No. 3-5, 08.04.2008, p. 1075-1099.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Response-only method for damage detection of beam-like structures using high accuracy frequencies with auxiliary mass spatial probing

AU - Zhong, Shuncong

AU - Oyadiji, S. Olutunde

AU - Ding, Kang

PY - 2008/4/8

Y1 - 2008/4/8

N2 - This paper proposes a new approach based on auxiliary mass spatial probing using spectral centre correction method (SCCM), to provide a simple solution for damage detection by just using the response time history of beam-like structures. The natural frequencies of a damaged beam with a traversing auxiliary mass change due to change in the inertia of the beam as the auxiliary mass is traversed along the beam, as well as the point-to-point variations in the flexibility of the beam. Therefore the auxiliary mass can enhance the effects of the crack on the dynamics of the beam and, therefore, facilitate the identification and location of damage in the beam. That is, the auxiliary mass can be used to probe the dynamic characteristic of the beam by traversing the mass from one end of the beam to the other. However, it is impossible to obtain accurate modal frequencies by the direct operation of the fast Fourier transform (FFT) of the response data of the structure because the frequency spectrum can be only calculated from limited sampled time data which results in the well-known leakage effect. SCCM is identical to the energy centrobaric correction method (ECCM) which is a practical and effective method used in rotating mechanical fault diagnosis and which resolves the shortcoming of FFT and can provide high accuracy estimate of frequency, amplitude and phase. In the present work, the modal responses of damaged simply supported beams with auxiliary mass are computed using the finite element method (FEM). The graphical plots of the natural frequencies calculated by SCCM versus axial location of auxiliary mass are obtained. However, it is difficult to locate the crack directly from the curve of natural frequencies. A simple and fast method, the derivatives of natural frequency curve, is proposed in the paper which can provide crack information for damage detection of beam-like structures. The efficiency and practicability of the proposed method is illustrated via numerical simulation. For real cases, experimental noise is expected to corrupt the response data and, ultimately, the natural frequencies of beam-like structures. Therefore, the response data with a normally distributed random noise is also studied. Also, the effects of crack depth, auxiliary mass and damping ratios on the proposed method are investigated. From the simulated results, the efficiency and robustness of the proposed method is demonstrated. The results show that the proposed method has low computational cost and high precision.

AB - This paper proposes a new approach based on auxiliary mass spatial probing using spectral centre correction method (SCCM), to provide a simple solution for damage detection by just using the response time history of beam-like structures. The natural frequencies of a damaged beam with a traversing auxiliary mass change due to change in the inertia of the beam as the auxiliary mass is traversed along the beam, as well as the point-to-point variations in the flexibility of the beam. Therefore the auxiliary mass can enhance the effects of the crack on the dynamics of the beam and, therefore, facilitate the identification and location of damage in the beam. That is, the auxiliary mass can be used to probe the dynamic characteristic of the beam by traversing the mass from one end of the beam to the other. However, it is impossible to obtain accurate modal frequencies by the direct operation of the fast Fourier transform (FFT) of the response data of the structure because the frequency spectrum can be only calculated from limited sampled time data which results in the well-known leakage effect. SCCM is identical to the energy centrobaric correction method (ECCM) which is a practical and effective method used in rotating mechanical fault diagnosis and which resolves the shortcoming of FFT and can provide high accuracy estimate of frequency, amplitude and phase. In the present work, the modal responses of damaged simply supported beams with auxiliary mass are computed using the finite element method (FEM). The graphical plots of the natural frequencies calculated by SCCM versus axial location of auxiliary mass are obtained. However, it is difficult to locate the crack directly from the curve of natural frequencies. A simple and fast method, the derivatives of natural frequency curve, is proposed in the paper which can provide crack information for damage detection of beam-like structures. The efficiency and practicability of the proposed method is illustrated via numerical simulation. For real cases, experimental noise is expected to corrupt the response data and, ultimately, the natural frequencies of beam-like structures. Therefore, the response data with a normally distributed random noise is also studied. Also, the effects of crack depth, auxiliary mass and damping ratios on the proposed method are investigated. From the simulated results, the efficiency and robustness of the proposed method is demonstrated. The results show that the proposed method has low computational cost and high precision.

KW - damage detection

KW - dynamic models

KW - fast fourier transforms

KW - probes

KW - structural analysis

UR - http://www.sciencedirect.com/science/journal/0022460X

U2 - 10.1016/j.jsv.2007.10.004

DO - 10.1016/j.jsv.2007.10.004

M3 - Article

VL - 311

SP - 1075

EP - 1099

JO - Journal of Sound and Vibration

JF - Journal of Sound and Vibration

SN - 0022-460X

IS - 3-5

ER -