Relation between microstructure and charge transport in polymers of different regioregularity

David P. McMahon, David Cheung, Ludwig Goris, Javier Dacuña, Alberto Salleo, Alessandro Troisi

Research output: Contribution to journalArticle

67 Citations (Scopus)

Abstract

A methodology to link an atomistic description of a polymeric semiconductor with the experimental electrical characteristics of real devices is proposed. Microscopic models of poly(3-hexylthiophene) (P3HT) of different regioregularity are generated using molecular dynamics and their electronic structure determined via an approximate quantum chemistry scheme. The resulting density of trap states and distribution of localized and delocalized states is then compared with that obtained from thin film transistor measurements of P3HT at different regioregularities. The two complementary methodologies provide a converging description of the electron transport in semicrystalline P3HT and the role of regioregularity. States at the valence band edge are localized, but delocalized “band-like” states are thermally accessible and quantitatively characterized. Both theory and experiment agree that contrary to a commonly held belief the trap density and the DOS shape are little affected by the presence of regioregularity defects.
Original languageEnglish
Pages (from-to)19386-19393
Number of pages8
JournalJournal of Physical Chemistry C
Volume115
Issue number39
Early online date24 Aug 2011
DOIs
Publication statusPublished - 6 Oct 2011

Keywords

  • polymeric semiconductor
  • regioregularity defects
  • thin film transistor measurements

Fingerprint Dive into the research topics of 'Relation between microstructure and charge transport in polymers of different regioregularity'. Together they form a unique fingerprint.

  • Cite this

    McMahon, D. P., Cheung, D., Goris, L., Dacuña, J., Salleo, A., & Troisi, A. (2011). Relation between microstructure and charge transport in polymers of different regioregularity. Journal of Physical Chemistry C, 115(39), 19386-19393. https://doi.org/10.1021/jp207026s