Re-assessment of YAP1 and MCR1 contributions to inhibitor tolerance in robust engineered Saccharomyces cerevisiae fermenting undetoxified lignocellulosic hydrolysate

Valeria Wallace-Salinas, Lorenzo Signori, Ying Ying Li, Magnus Ask, Maurizio Bettiga, Danilo Porro, Johan M. Thevelein, Paola Branduardi, María R. Foulquié-Moreno, Marie Gorwa-Grauslund*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

Development of robust yeast strains that can efficiently ferment lignocellulose-based feedstocks is one of the requirements for achieving economically feasible bioethanol production processes. With this goal, several genes have been identified as promising candidates to confer improved tolerance to S. cerevisiae. In most of the cases, however, the evaluation of the genetic modification was performed only in laboratory strains, that is, in strains that are known to be quite sensitive to various types of stresses. In the present study, we evaluated the effects of overexpressing genes encoding the transcription factor (YAP1) and the mitochondrial NADH-cytochrome b5 reductase (MCR1), either alone or in combination, in an already robust and xylose-consuming industrial strain of S. cerevisiae and evaluated the effect during the fermentation of undiluted and undetoxified spruce hydrolysate. Overexpression of either gene resulted in faster hexose catabolism, but no cumulative effect was observed with the simultaneous overexpression. The improved phenotype of MCR1 overexpression appeared to be related, at least in part, to a faster furaldehyde reduction capacity, indicating that this reductase may have a wider substrate range than previously reported. Unexpectedly a decreased xylose fermentation rate was also observed in YAP1 overexpressing strains and possible reasons behind this phenotype are discussed.

Original languageEnglish
Article number56
Pages (from-to)1-12
Number of pages12
JournalAMB Express
Volume4
Issue number1
DOIs
Publication statusPublished - 22 Jul 2014

Keywords

  • ethanol
  • hydrolysate
  • inhibitors
  • MCR1
  • saccharomyces cerevisiae
  • YAP1

Fingerprint

Dive into the research topics of 'Re-assessment of YAP1 and MCR1 contributions to inhibitor tolerance in robust engineered Saccharomyces cerevisiae fermenting undetoxified lignocellulosic hydrolysate'. Together they form a unique fingerprint.

Cite this