TY - JOUR
T1 - Rayleigh-Taylor mixing
T2 - Direct numerical simulation and implicit large eddy simulation
AU - Youngs, David L.
PY - 2017/6/22
Y1 - 2017/6/22
N2 - Previous research into three-dimensional numerical simulation of self-similar mixing due to Rayleigh-Taylor instability is summarized. A range of numerical approaches has been used: direct numerical simulation, implicit large eddy simulation and large eddy simulation with an explicit model for sub-grid-scale dissipation. However, few papers have made direct comparisons between the various approaches. The main purpose of the current paper is to give comparisons of direct numerical simulations and implicit large eddy simulations using the same computational framework. Results are shown for four test cases: (i) single-mode Rayleigh-Taylor instability, (ii) self-similar Rayleigh-Taylor mixing, (iii) three-layer mixing and (iv) a tilted-rig Rayleigh-Taylor experiment. It is found that both approaches give similar results for the high-Reynolds number behavior. Direct numerical simulation is needed to assess the influence of finite Reynolds number.
AB - Previous research into three-dimensional numerical simulation of self-similar mixing due to Rayleigh-Taylor instability is summarized. A range of numerical approaches has been used: direct numerical simulation, implicit large eddy simulation and large eddy simulation with an explicit model for sub-grid-scale dissipation. However, few papers have made direct comparisons between the various approaches. The main purpose of the current paper is to give comparisons of direct numerical simulations and implicit large eddy simulations using the same computational framework. Results are shown for four test cases: (i) single-mode Rayleigh-Taylor instability, (ii) self-similar Rayleigh-Taylor mixing, (iii) three-layer mixing and (iv) a tilted-rig Rayleigh-Taylor experiment. It is found that both approaches give similar results for the high-Reynolds number behavior. Direct numerical simulation is needed to assess the influence of finite Reynolds number.
KW - direct numerical simulation
KW - implicit large eddy simulation
KW - Rayleigh Taylor instability
UR - http://www.scopus.com/inward/record.url?scp=85021204116&partnerID=8YFLogxK
UR - http://iopscience.iop.org/article/10.1088/1402-4896/aa732b/meta;jsessionid=437C8E154F6112F1AF23B4E3356E58C0.c1.iopscience.cld.iop.org
U2 - 10.1088/1402-4896/aa732b
DO - 10.1088/1402-4896/aa732b
M3 - Article
AN - SCOPUS:85021204116
SN - 0031-8949
VL - 92
JO - Physica Scripta
JF - Physica Scripta
IS - 7
M1 - 074006
ER -