Rapid and continuous regulating adhesion strength by mechanical micro-vibration

Langquan Shui, Laibing Jia, Hangbo Li, Jiaojiao Guo, Ziyu Guo, Yilun Liu, Ze Liu, Xi Chen

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)
26 Downloads (Pure)


Controlled tuning of interface adhesion is crucial to a broad range of applications, such as space technology, micro-fabrication, flexible electronics, robotics, and bio-integrated devices. Here, we show a robust and predictable method to continuously regulate interface adhesion by exciting the mechanical micro-vibration in the adhesive system perpendicular to the contact plane. An analytic model reveals the underlying mechanism of adhesion hysteresis and dynamic instability. For a typical PDMS-glass adhesion system, the apparent adhesion strength can be enhanced by 77 times or weakened to 0. Notably, the resulting adhesion switching timescale is comparable to that of geckos (15 ms), and such rapid adhesion switching can be repeated for more than 2×10^7 vibration cycles without any noticeable degradation in the adhesion performance. Our method is independent of surface microstructures and does not require a preload, representing a simple and practical way to design and control surface adhesion in relevant applications.
Original languageEnglish
Article number1583
Number of pages7
JournalNature Communications
Issue number1
Publication statusPublished - 27 Mar 2020


  • interface adhesion
  • regulation
  • contact plane
  • vibration


Dive into the research topics of 'Rapid and continuous regulating adhesion strength by mechanical micro-vibration'. Together they form a unique fingerprint.

Cite this