Abstract
By enhancing data accessibility, the implementation of data-driven models has been made possible to empower strategies in relation to O&M activities. Such models have been extensively applied to perform anomaly detection tasks, with the express purpose of detecting data patterns that deviate significantly from normal operational behaviour. Due to its preeminent importance in the maritime industry to adequately identify the behaviour of marine systems, the Real-time Anomaly Detection Intelligent System (RADIS) framework, constituted by a Long Short-Term Memory-based Variational Autoencoder in tandem with multi-level Otsu's thresholding, is proposed. RADIS aims to address the current gaps identified within the maritime industry in relation to data-driven model applications for enabling smart maintenance. To assess the performance of such a framework, a case study on a total of 14 parameters obtained from sensors installed on a diesel generator of a tanker ship is introduced to highlight the implementation of RADIS. Results demonstrated the capability of RADIS to be part of a diagnostic analytics tool that will promote the implementation of smart maintenance within the maritime industry, as RADIS detected an average of 92.5% of anomalous instances in the presented case study.
Original language | English |
---|---|
Article number | 117634 |
Number of pages | 13 |
Journal | Expert Systems with Applications |
Volume | 204 |
Early online date | 26 May 2022 |
DOIs | |
Publication status | Published - 15 Oct 2022 |
Keywords
- anomaly detection
- smart maintenance
- ship systems
- marine machinery
- deep learning
- intelligent real-time systems