TY - JOUR
T1 - Quench of a single-layer ReBCO CORC cable with non-uniform terminal contact resistance
AU - Zhu, Zixuan
AU - Wang, Yawei
AU - Xing, Dong
AU - Pei, Xiaoze
AU - Zhang, Min
AU - Yuan, Weijia
N1 - © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
PY - 2019/8/30
Y1 - 2019/8/30
N2 - ReBCO conductor-on-round-core (CORC) cable has become a promising candidate for high temperature superconducting (HTS) power applications, due to its great mechanical strength, high current carrying capacity, high flexibility, and low ac losses. However, ReBCO coated conductors are at risk of quenching, which significantly affects the thermal stability and reliability of the CORC cable. Three-dimensional (3-D) numerical study on the quench behavior of the CORC cable remains a challenge, for its complex geometry is difficult to cope with. In this paper, a 3-D time-dependent multi-physics quench model based on the T-A formulation has been developed. Three modules are coupled in this model; the T-A formulation model, a heat transfer model, and an equivalent circuit model. The quench behavior of a single-layer ReBCO CORC cable with non-uniform terminal contact resistances has been studied, when a hotspot is imposed on one of the tapes to induce a local quench. Results show that, the CORC cable has the highest MQE; in other words, it is the most stable situation, when the hotspot-induced quench occurs on the tape with the middle value of terminal contact resistance.
AB - ReBCO conductor-on-round-core (CORC) cable has become a promising candidate for high temperature superconducting (HTS) power applications, due to its great mechanical strength, high current carrying capacity, high flexibility, and low ac losses. However, ReBCO coated conductors are at risk of quenching, which significantly affects the thermal stability and reliability of the CORC cable. Three-dimensional (3-D) numerical study on the quench behavior of the CORC cable remains a challenge, for its complex geometry is difficult to cope with. In this paper, a 3-D time-dependent multi-physics quench model based on the T-A formulation has been developed. Three modules are coupled in this model; the T-A formulation model, a heat transfer model, and an equivalent circuit model. The quench behavior of a single-layer ReBCO CORC cable with non-uniform terminal contact resistances has been studied, when a hotspot is imposed on one of the tapes to induce a local quench. Results show that, the CORC cable has the highest MQE; in other words, it is the most stable situation, when the hotspot-induced quench occurs on the tape with the middle value of terminal contact resistance.
KW - superconducting cables
KW - heating systems
KW - power cables
KW - high temperature superconductors
KW - CORC
KW - ReBCO conductor-on-round-core
U2 - 10.1109/TASC.2019.2900383
DO - 10.1109/TASC.2019.2900383
M3 - Article
VL - 29
JO - IEEE Transactions on Applied Superconductivity
JF - IEEE Transactions on Applied Superconductivity
SN - 1051-8223
IS - 5
M1 - 4801905
ER -