Quench behavior of high-temperature superconductor (RE)Ba2Cu3Ox CORC cable

Yawei Wang, Jinxing Zheng, Zixuan Zhu, Min Zhang, Weijia Yuan

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

The high-temperature superconductor (HTS) (RE)Ba 2Cu 3O x (REBCO) conductor on round core (CORC) cable has great advantages with its high current capacity and power density. In REBCO CORC cables, current is redistributed among tapes through terminal contact resistance (TCR) when a local quench occurs. Therefore, its quench behavior is different from the single tape situation. To better understand the underlying physical process of local quenches in CORC cables, a new 3D multi-physics modeling tool for CORC cables is developed and presented in this paper. In this model, the REBCO tape is treated as a thin shell without thickness, and four models are coupled: a T-formulation model, an A-formulation model, a heat transfer model, and an equivalent circuit model. The T-formulation model is applied to the conductor shell only to calculate current distribution, which will be input into the A-formulation model; the A-formulation model is applied to the whole 3D domain to calculate the magnetic field, which is then fed back to the T-formulation model. The hot spot-induced quenches of CORC cables are analyzed. The results show that the thermal stability of the CORC cable can be considerably improved by reducing the TCR. The minimum quench energy (MQE) increases rapidly with the reduction of TCR when the resistance is in a middle range, which is about in this study. When the TCR is too low () or too high (), the MQE shows no obvious variation with TCR. With a low TCR, a hot spot in one tape may induce an overcurrent quench on other tapes. This will not happen in a cable with high TCR. In this case, the tape with a hot spot will quench and burn out before inducing a quench on other tapes. The developed modeling tool can be used to design CORC cables with improved thermal stability.

LanguageEnglish
Article number345303
Number of pages13
JournalJournal of Physics D: Applied Physics
Volume52
Issue number34
Early online date30 Apr 2019
DOIs
Publication statusPublished - 24 Jun 2019

Fingerprint

Cable cores
High temperature superconductors
high temperature superconductors
cables
conductors
Contact resistance
contact resistance
Tapes
tapes
formulations
Thermodynamic stability
thermal stability
current distribution
equivalent circuits
Equivalent circuits
high current
radiant flux density
Cables
Physics
heat transfer

Keywords

  • quench behavior
  • HTS CORC cable
  • terminal contact resistance
  • multi-physics

Cite this

@article{9fc5bb099b8d49f789312fa5df14ca67,
title = "Quench behavior of high-temperature superconductor (RE)Ba2Cu3Ox CORC cable",
abstract = "The high-temperature superconductor (HTS) (RE)Ba 2Cu 3O x (REBCO) conductor on round core (CORC) cable has great advantages with its high current capacity and power density. In REBCO CORC cables, current is redistributed among tapes through terminal contact resistance (TCR) when a local quench occurs. Therefore, its quench behavior is different from the single tape situation. To better understand the underlying physical process of local quenches in CORC cables, a new 3D multi-physics modeling tool for CORC cables is developed and presented in this paper. In this model, the REBCO tape is treated as a thin shell without thickness, and four models are coupled: a T-formulation model, an A-formulation model, a heat transfer model, and an equivalent circuit model. The T-formulation model is applied to the conductor shell only to calculate current distribution, which will be input into the A-formulation model; the A-formulation model is applied to the whole 3D domain to calculate the magnetic field, which is then fed back to the T-formulation model. The hot spot-induced quenches of CORC cables are analyzed. The results show that the thermal stability of the CORC cable can be considerably improved by reducing the TCR. The minimum quench energy (MQE) increases rapidly with the reduction of TCR when the resistance is in a middle range, which is about in this study. When the TCR is too low () or too high (), the MQE shows no obvious variation with TCR. With a low TCR, a hot spot in one tape may induce an overcurrent quench on other tapes. This will not happen in a cable with high TCR. In this case, the tape with a hot spot will quench and burn out before inducing a quench on other tapes. The developed modeling tool can be used to design CORC cables with improved thermal stability.",
keywords = "quench behavior, HTS CORC cable, terminal contact resistance, multi-physics",
author = "Yawei Wang and Jinxing Zheng and Zixuan Zhu and Min Zhang and Weijia Yuan",
year = "2019",
month = "6",
day = "24",
doi = "10.1088/1361-6463/ab1e2c",
language = "English",
volume = "52",
journal = "Journal of Physics D: Applied Physics",
issn = "0022-3727",
number = "34",

}

Quench behavior of high-temperature superconductor (RE)Ba2Cu3Ox CORC cable. / Wang, Yawei; Zheng, Jinxing; Zhu, Zixuan; Zhang, Min; Yuan, Weijia.

In: Journal of Physics D: Applied Physics, Vol. 52, No. 34, 345303, 24.06.2019.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Quench behavior of high-temperature superconductor (RE)Ba2Cu3Ox CORC cable

AU - Wang, Yawei

AU - Zheng, Jinxing

AU - Zhu, Zixuan

AU - Zhang, Min

AU - Yuan, Weijia

PY - 2019/6/24

Y1 - 2019/6/24

N2 - The high-temperature superconductor (HTS) (RE)Ba 2Cu 3O x (REBCO) conductor on round core (CORC) cable has great advantages with its high current capacity and power density. In REBCO CORC cables, current is redistributed among tapes through terminal contact resistance (TCR) when a local quench occurs. Therefore, its quench behavior is different from the single tape situation. To better understand the underlying physical process of local quenches in CORC cables, a new 3D multi-physics modeling tool for CORC cables is developed and presented in this paper. In this model, the REBCO tape is treated as a thin shell without thickness, and four models are coupled: a T-formulation model, an A-formulation model, a heat transfer model, and an equivalent circuit model. The T-formulation model is applied to the conductor shell only to calculate current distribution, which will be input into the A-formulation model; the A-formulation model is applied to the whole 3D domain to calculate the magnetic field, which is then fed back to the T-formulation model. The hot spot-induced quenches of CORC cables are analyzed. The results show that the thermal stability of the CORC cable can be considerably improved by reducing the TCR. The minimum quench energy (MQE) increases rapidly with the reduction of TCR when the resistance is in a middle range, which is about in this study. When the TCR is too low () or too high (), the MQE shows no obvious variation with TCR. With a low TCR, a hot spot in one tape may induce an overcurrent quench on other tapes. This will not happen in a cable with high TCR. In this case, the tape with a hot spot will quench and burn out before inducing a quench on other tapes. The developed modeling tool can be used to design CORC cables with improved thermal stability.

AB - The high-temperature superconductor (HTS) (RE)Ba 2Cu 3O x (REBCO) conductor on round core (CORC) cable has great advantages with its high current capacity and power density. In REBCO CORC cables, current is redistributed among tapes through terminal contact resistance (TCR) when a local quench occurs. Therefore, its quench behavior is different from the single tape situation. To better understand the underlying physical process of local quenches in CORC cables, a new 3D multi-physics modeling tool for CORC cables is developed and presented in this paper. In this model, the REBCO tape is treated as a thin shell without thickness, and four models are coupled: a T-formulation model, an A-formulation model, a heat transfer model, and an equivalent circuit model. The T-formulation model is applied to the conductor shell only to calculate current distribution, which will be input into the A-formulation model; the A-formulation model is applied to the whole 3D domain to calculate the magnetic field, which is then fed back to the T-formulation model. The hot spot-induced quenches of CORC cables are analyzed. The results show that the thermal stability of the CORC cable can be considerably improved by reducing the TCR. The minimum quench energy (MQE) increases rapidly with the reduction of TCR when the resistance is in a middle range, which is about in this study. When the TCR is too low () or too high (), the MQE shows no obvious variation with TCR. With a low TCR, a hot spot in one tape may induce an overcurrent quench on other tapes. This will not happen in a cable with high TCR. In this case, the tape with a hot spot will quench and burn out before inducing a quench on other tapes. The developed modeling tool can be used to design CORC cables with improved thermal stability.

KW - quench behavior

KW - HTS CORC cable

KW - terminal contact resistance

KW - multi-physics

U2 - 10.1088/1361-6463/ab1e2c

DO - 10.1088/1361-6463/ab1e2c

M3 - Article

VL - 52

JO - Journal of Physics D: Applied Physics

T2 - Journal of Physics D: Applied Physics

JF - Journal of Physics D: Applied Physics

SN - 0022-3727

IS - 34

M1 - 345303

ER -