Quantum limits on noise in dual input-output linear optical amplifiers and attenuators

R Loudon, O Jedrkiewicz, S M Barnett, J Jeffers

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)


The input-output relations for linear amplifiers and attenuators that have two input and two output channels are used to derive inequalities that relate their gain profiles and output noise spectra. The results generalize earlier derivations, which mainly focus their attention on single-channel devices, to the two-ended amplifiers and attenuators often used in practical communications systems. The present inequalities are satisfied by the results of previous calculations for specific model systems. It is shown that; in contrast to single-channel devices, a two-ended system can act as an amplifier for some input signals and an attenuator for others, even when all the signal frequencies are the same. The output from the two-channel amplifier has a minimum noise determined by the sum of the gains for both input channels, even when only one input channel is used and the other is in its vacuum state. The conditions on device construction needed to achieve equal gains for signals that arrive at the two ends of the device are determined. The present results reduce to those of single-channel theory in special cases where the two output channels are each separately fed by only one of the two input channels.

Original languageEnglish
Pages (from-to)-
Number of pages8
JournalPhysical Review A
Issue number3
Publication statusPublished - Mar 2003


  • electromagnetic fields
  • commutation relations
  • 4-port devices
  • dielectrics


Dive into the research topics of 'Quantum limits on noise in dual input-output linear optical amplifiers and attenuators'. Together they form a unique fingerprint.

Cite this