Quantum formulation of fractional orbital angular momentum

J. B. Goette, S. Franke-Arnold, R. Zambrini, Stephen M. Barnett

Research output: Contribution to journalArticle

72 Citations (Scopus)

Abstract

The quantum theory of rotation angles [ S. M. Barnett and D. T. Pegg, Phys. Rev. A 41 3427 ( 1990)] is generalized to non-integer values of the orbital angular momentum. This requires the introduction of an additional parameter, the orientation of a phase discontinuity associated with fractional values of the orbital angular momentum. We apply our formalism to the propagation of light modes with fractional orbital angular momentum in the paraxial and non-paraxial regime.

LanguageEnglish
Pages1723-1738
Number of pages16
JournalJournal of Modern Optics
Volume54
Issue number12
DOIs
Publication statusPublished - 2007

Fingerprint

angular momentum
formulations
orbitals
quantum theory
discontinuity
formalism
propagation

Keywords

  • phase
  • light
  • optics
  • quantum theory

Cite this

Goette, J. B., Franke-Arnold, S., Zambrini, R., & Barnett, S. M. (2007). Quantum formulation of fractional orbital angular momentum. Journal of Modern Optics, 54(12), 1723-1738. https://doi.org/10.1080/09500340601156827
Goette, J. B. ; Franke-Arnold, S. ; Zambrini, R. ; Barnett, Stephen M. / Quantum formulation of fractional orbital angular momentum. In: Journal of Modern Optics. 2007 ; Vol. 54, No. 12. pp. 1723-1738.
@article{216cce8d16894c18b80750d65c38ca9f,
title = "Quantum formulation of fractional orbital angular momentum",
abstract = "The quantum theory of rotation angles [ S. M. Barnett and D. T. Pegg, Phys. Rev. A 41 3427 ( 1990)] is generalized to non-integer values of the orbital angular momentum. This requires the introduction of an additional parameter, the orientation of a phase discontinuity associated with fractional values of the orbital angular momentum. We apply our formalism to the propagation of light modes with fractional orbital angular momentum in the paraxial and non-paraxial regime.",
keywords = "phase, light, optics, quantum theory",
author = "Goette, {J. B.} and S. Franke-Arnold and R. Zambrini and Barnett, {Stephen M.}",
year = "2007",
doi = "10.1080/09500340601156827",
language = "English",
volume = "54",
pages = "1723--1738",
journal = "Journal of Modern Optics",
issn = "0950-0340",
number = "12",

}

Goette, JB, Franke-Arnold, S, Zambrini, R & Barnett, SM 2007, 'Quantum formulation of fractional orbital angular momentum' Journal of Modern Optics, vol. 54, no. 12, pp. 1723-1738. https://doi.org/10.1080/09500340601156827

Quantum formulation of fractional orbital angular momentum. / Goette, J. B.; Franke-Arnold, S.; Zambrini, R.; Barnett, Stephen M.

In: Journal of Modern Optics, Vol. 54, No. 12, 2007, p. 1723-1738.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Quantum formulation of fractional orbital angular momentum

AU - Goette, J. B.

AU - Franke-Arnold, S.

AU - Zambrini, R.

AU - Barnett, Stephen M.

PY - 2007

Y1 - 2007

N2 - The quantum theory of rotation angles [ S. M. Barnett and D. T. Pegg, Phys. Rev. A 41 3427 ( 1990)] is generalized to non-integer values of the orbital angular momentum. This requires the introduction of an additional parameter, the orientation of a phase discontinuity associated with fractional values of the orbital angular momentum. We apply our formalism to the propagation of light modes with fractional orbital angular momentum in the paraxial and non-paraxial regime.

AB - The quantum theory of rotation angles [ S. M. Barnett and D. T. Pegg, Phys. Rev. A 41 3427 ( 1990)] is generalized to non-integer values of the orbital angular momentum. This requires the introduction of an additional parameter, the orientation of a phase discontinuity associated with fractional values of the orbital angular momentum. We apply our formalism to the propagation of light modes with fractional orbital angular momentum in the paraxial and non-paraxial regime.

KW - phase

KW - light

KW - optics

KW - quantum theory

U2 - 10.1080/09500340601156827

DO - 10.1080/09500340601156827

M3 - Article

VL - 54

SP - 1723

EP - 1738

JO - Journal of Modern Optics

T2 - Journal of Modern Optics

JF - Journal of Modern Optics

SN - 0950-0340

IS - 12

ER -