Quantum computing with alkaline-earth-metal atoms

A.J. Daley, M.M. Boyd, J. Ye, P. Zoller

Research output: Contribution to journalArticlepeer-review

188 Citations (Scopus)
69 Downloads (Pure)


We present a complete scheme for quantum information processing using the unique features of alkaline-earth-metal atoms. We show how two completely independent lattices can be formed for the S01 and P03 states, with one used as a storage lattice for qubits encoded on the nuclear spin, and the other as a transport lattice to move qubits and perform gate operations. We discuss how the P23 level can be used for addressing of individual qubits, and how collisional losses from metastable states can be used to perform gates via a lossy blockade mechanism.
Original languageEnglish
Article number170504
Number of pages4
JournalPhysical Review Letters
Issue number17
Publication statusPublished - 23 Oct 2008


  • quantum computing
  • alkaline-earth-metal atoms


Dive into the research topics of 'Quantum computing with alkaline-earth-metal atoms'. Together they form a unique fingerprint.

Cite this