Quantitative shadowgraphy and proton radiography for large intensity modulations

Muhammad Firmansyah Kasim, Luke Ceurvorst, Naren Ratan, James Sadler, Nicholas Chen, Alexander Sävert, Raoul Trines, Robert Bingham, Philip N. Burrows, Malte C. Kaluza, Peter Norreys

Research output: Contribution to journalArticle

6 Citations (Scopus)
84 Downloads (Pure)

Abstract

Shadowgraphy is a technique widely used to diagnose objects or systems in various fields in physics and engineering. In shadowgraphy, an optical beam is deflected by the object and then the intensity modulation is captured on a screen placed some distance away. However, retrieving quantitative information from the shadowgrams themselves is a challenging task because of the nonlinear nature of the process. Here, we present a method to retrieve quantitative information from shadowgrams, based on computational geometry. This process can also be applied to proton radiography for electric and magnetic field diagnosis in high-energy-density plasmas and has been benchmarked using a toroidal magnetic field as the object, among others. It is shown that the method can accurately retrieve quantitative parameters with error bars less than 10%, even when caustics are present. The method is also shown to be robust enough to process real experimental results with simple pre- and postprocessing techniques. This adds a powerful tool for research in various fields in engineering and physics for both techniques.
Original languageEnglish
Article number023306
JournalPhysical Review E
Volume95
DOIs
Publication statusPublished - 16 Feb 2017

Keywords

  • shadowgraphy
  • proton radiography
  • large intensity modulations
  • optical beams
  • deflectometry

Fingerprint Dive into the research topics of 'Quantitative shadowgraphy and proton radiography for large intensity modulations'. Together they form a unique fingerprint.

  • Cite this

    Kasim, M. F., Ceurvorst, L., Ratan, N., Sadler, J., Chen, N., Sävert, A., ... Norreys, P. (2017). Quantitative shadowgraphy and proton radiography for large intensity modulations. Physical Review E, 95, [023306]. https://doi.org/10.1103/PhysRevE.95.023306