Quantitative methods for tracking cognitive change 3 years after coronary artery bypass surgery

Sarah J.E. Barry, Scott L. Zeger, Ola A. Selnes, Maura A. Grega, Louis M. Borowicz, Guy M. McKhann

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

The analysis and interpretation of change in cognitive function test scores after coronary artery bypass grafting (CABG) present considerable statistical challenges. Application of hierarchical linear statistical models can estimate the effects of a surgical intervention on the time course of multiple biomarkers. We use an "analyze then summarize" approach whereby we estimate the intervention effects separately for each cognitive test and then pool them, taking appropriate account of their statistical correlations. The model accounts for dropouts at follow-up, the chance of which may be related to past cognitive score, by implicitly imputing the missing data from individuals' past scores and group patterns. We apply this approach to a study of the effects of CABG on the time course of cognitive function as measured by 16 separate neuropsychological test scores, clustered into 8 cognitive domains. The study includes measurements on 140 CABG patients and 92 nonsurgical controls at baseline, and at 3, 12, and 36 months. Our "analyze then summarize" method allows us to identify differences between the treatment groups in individual tests as well as in aggregate measures. It takes into account the correlation structure of the data and thereby produces more precise results than summarizing before analyzing. The methods used have application to a wide range of intervention studies in which multiple biomarkers are followed over time to quantify health effects. Software to implement the methods in the R statistical package is available from the authors at http://www.biostat.jhsph.edu/sbarry/software/ATSrcode.pdf.
LanguageEnglish
Pages1104-1109
Number of pages6
JournalAnnals of Thoracic Surgery
Volume79
Issue number4
Early online date25 Mar 2005
DOIs
Publication statusPublished - 30 Apr 2005

Fingerprint

Coronary Artery Bypass
Cognition
Software
Biomarkers
Neuropsychological Tests
Statistical Models
Linear Models
Health
Therapeutics

Keywords

  • oronary artery bypass grafting (CABG)
  • cognitive function
  • statistical models
  • surgical intervention

Cite this

Barry, Sarah J.E. ; Zeger, Scott L. ; Selnes, Ola A. ; Grega, Maura A. ; Borowicz, Louis M. ; McKhann, Guy M. / Quantitative methods for tracking cognitive change 3 years after coronary artery bypass surgery. In: Annals of Thoracic Surgery. 2005 ; Vol. 79, No. 4. pp. 1104-1109.
@article{a4d4be43508044b59e39a33e399ad642,
title = "Quantitative methods for tracking cognitive change 3 years after coronary artery bypass surgery",
abstract = "The analysis and interpretation of change in cognitive function test scores after coronary artery bypass grafting (CABG) present considerable statistical challenges. Application of hierarchical linear statistical models can estimate the effects of a surgical intervention on the time course of multiple biomarkers. We use an {"}analyze then summarize{"} approach whereby we estimate the intervention effects separately for each cognitive test and then pool them, taking appropriate account of their statistical correlations. The model accounts for dropouts at follow-up, the chance of which may be related to past cognitive score, by implicitly imputing the missing data from individuals' past scores and group patterns. We apply this approach to a study of the effects of CABG on the time course of cognitive function as measured by 16 separate neuropsychological test scores, clustered into 8 cognitive domains. The study includes measurements on 140 CABG patients and 92 nonsurgical controls at baseline, and at 3, 12, and 36 months. Our {"}analyze then summarize{"} method allows us to identify differences between the treatment groups in individual tests as well as in aggregate measures. It takes into account the correlation structure of the data and thereby produces more precise results than summarizing before analyzing. The methods used have application to a wide range of intervention studies in which multiple biomarkers are followed over time to quantify health effects. Software to implement the methods in the R statistical package is available from the authors at http://www.biostat.jhsph.edu/sbarry/software/ATSrcode.pdf.",
keywords = "oronary artery bypass grafting (CABG), cognitive function, statistical models, surgical intervention",
author = "Barry, {Sarah J.E.} and Zeger, {Scott L.} and Selnes, {Ola A.} and Grega, {Maura A.} and Borowicz, {Louis M.} and McKhann, {Guy M.}",
year = "2005",
month = "4",
day = "30",
doi = "10.1016/j.athoracsur.2004.10.016",
language = "English",
volume = "79",
pages = "1104--1109",
journal = "Annals of Thoracic Surgery",
issn = "0003-4975",
publisher = "Elsevier Inc.",
number = "4",

}

Quantitative methods for tracking cognitive change 3 years after coronary artery bypass surgery. / Barry, Sarah J.E.; Zeger, Scott L.; Selnes, Ola A.; Grega, Maura A.; Borowicz, Louis M.; McKhann, Guy M.

In: Annals of Thoracic Surgery, Vol. 79, No. 4, 30.04.2005, p. 1104-1109.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Quantitative methods for tracking cognitive change 3 years after coronary artery bypass surgery

AU - Barry, Sarah J.E.

AU - Zeger, Scott L.

AU - Selnes, Ola A.

AU - Grega, Maura A.

AU - Borowicz, Louis M.

AU - McKhann, Guy M.

PY - 2005/4/30

Y1 - 2005/4/30

N2 - The analysis and interpretation of change in cognitive function test scores after coronary artery bypass grafting (CABG) present considerable statistical challenges. Application of hierarchical linear statistical models can estimate the effects of a surgical intervention on the time course of multiple biomarkers. We use an "analyze then summarize" approach whereby we estimate the intervention effects separately for each cognitive test and then pool them, taking appropriate account of their statistical correlations. The model accounts for dropouts at follow-up, the chance of which may be related to past cognitive score, by implicitly imputing the missing data from individuals' past scores and group patterns. We apply this approach to a study of the effects of CABG on the time course of cognitive function as measured by 16 separate neuropsychological test scores, clustered into 8 cognitive domains. The study includes measurements on 140 CABG patients and 92 nonsurgical controls at baseline, and at 3, 12, and 36 months. Our "analyze then summarize" method allows us to identify differences between the treatment groups in individual tests as well as in aggregate measures. It takes into account the correlation structure of the data and thereby produces more precise results than summarizing before analyzing. The methods used have application to a wide range of intervention studies in which multiple biomarkers are followed over time to quantify health effects. Software to implement the methods in the R statistical package is available from the authors at http://www.biostat.jhsph.edu/sbarry/software/ATSrcode.pdf.

AB - The analysis and interpretation of change in cognitive function test scores after coronary artery bypass grafting (CABG) present considerable statistical challenges. Application of hierarchical linear statistical models can estimate the effects of a surgical intervention on the time course of multiple biomarkers. We use an "analyze then summarize" approach whereby we estimate the intervention effects separately for each cognitive test and then pool them, taking appropriate account of their statistical correlations. The model accounts for dropouts at follow-up, the chance of which may be related to past cognitive score, by implicitly imputing the missing data from individuals' past scores and group patterns. We apply this approach to a study of the effects of CABG on the time course of cognitive function as measured by 16 separate neuropsychological test scores, clustered into 8 cognitive domains. The study includes measurements on 140 CABG patients and 92 nonsurgical controls at baseline, and at 3, 12, and 36 months. Our "analyze then summarize" method allows us to identify differences between the treatment groups in individual tests as well as in aggregate measures. It takes into account the correlation structure of the data and thereby produces more precise results than summarizing before analyzing. The methods used have application to a wide range of intervention studies in which multiple biomarkers are followed over time to quantify health effects. Software to implement the methods in the R statistical package is available from the authors at http://www.biostat.jhsph.edu/sbarry/software/ATSrcode.pdf.

KW - oronary artery bypass grafting (CABG)

KW - cognitive function

KW - statistical models

KW - surgical intervention

UR - http://eprints.gla.ac.uk/54271/

UR - https://www.sciencedirect.com/journal/the-annals-of-thoracic-surgery

U2 - 10.1016/j.athoracsur.2004.10.016

DO - 10.1016/j.athoracsur.2004.10.016

M3 - Article

VL - 79

SP - 1104

EP - 1109

JO - Annals of Thoracic Surgery

T2 - Annals of Thoracic Surgery

JF - Annals of Thoracic Surgery

SN - 0003-4975

IS - 4

ER -