Quantification of solubility trapping in natural and engineered CO2 reservoirs

Rory Leslie, Andrew J. Cavanagh, R. Stuart Haszeldine, Gareth Johnson, Stuart M. V. Gilfillan

Research output: Contribution to journalArticlepeer-review


Secure retention of CO2 in geological reservoirs is essential for effective storage. Solubility trapping, the dissolution of CO2 into formation water, is a major sink on geological timescales in natural CO2 reservoirs. Observations during CO2 injection, combined with models of CO2 reservoirs, indicate the immediate onset of solubility trapping. There is uncertainty regarding the evolution of dissolution rates between the observable engineered timescale of years and decades, and the >10 kyr state represented by natural CO2 reservoirs. A small number of studies have constrained dissolution rates within natural analogues. The studies show that solubility trapping is the principal storage mechanism after structural trapping, removing 10–50% of CO2 across whole reservoirs. Natural analogues, engineered reservoirs and model studies produce a wide range of estimates on the fraction of CO2 dissolved and the dissolution rate. Analogue and engineered reservoirs do not show the high fractions of dissolved CO2 seen in several models. Evidence from natural analogues supports a model of most dissolution occurring during emplacement and migration, before the establishment of a stable gas–water contact. A rapid decline in CO2 dissolution rate over time suggests that analogue reservoirs are in dissolution equilibrium for most of the CO2 residence time.
Original languageEnglish
Article numberpetgeo2020–120
Number of pages10
JournalPetroleum Geoscience
Issue number4
Early online date26 Jul 2021
Publication statusE-pub ahead of print - 26 Jul 2021


  • Atlantic Ocean
  • carbon dioxide
  • carbon sequestration
  • Cenozoic
  • gas-water interface
  • injection
  • migration
  • Mississippi
  • natural analogs
  • Neogene
  • New Mexico
  • North Atlantic
  • North Sea
  • quantitative analysis
  • rates
  • resevoir properties
  • residence time
  • solubility
  • solution
  • tertiary
  • underground installations
  • underground storage
  • United States
  • Bravo Dome
  • Sleipner Field
  • Jackson Dome
  • Utsira Formation


Dive into the research topics of 'Quantification of solubility trapping in natural and engineered CO2 reservoirs'. Together they form a unique fingerprint.

Cite this