Projects per year
Abstract
Significance: Diffuse correlation spectroscopy (DCS) is a powerful, noninvasive optical technique for measuring blood flow. Traditionally the blood flow index (BFi) is derived through nonlinear least-square fitting the measured intensity autocorrelation function (ACF). However, the fitting process is computationally intensive, susceptible to measurement noise, and easily influenced by optical properties (absorption coefficient μ a and reduced scattering coefficient μ' s) and scalp and skull thicknesses. Aim: We aim to develop a data-driven method that enables rapid and robust analysis of multiple-scattered light's temporal ACFs. Moreover, the proposed method can be applied to a range of source-detector distances instead of being limited to a specific source-detector distance. Approach: We present a deep learning architecture with one-dimensional convolution neural networks, called DCS neural network (DCS-NET), for BFi and coherent factor (β) estimation. This DCS-NET was performed using simulated DCS data based on a three-layer brain model. We quantified the impact from physiologically relevant optical property variations, layer thicknesses, realistic noise levels, and multiple source-detector distances (5, 10, 15, 20, 25, and 30 mm) on BFi and β estimations among DCS-NET, semi-infinite, and three-layer fitting models. Results: DCS-NET shows a much faster analysis speed, around 17,000-fold and 32-fold faster than the traditional three-layer and semi-infinite models, respectively. It offers higher intrinsic sensitivity to deep tissues compared with fitting methods. DCS-NET shows excellent anti-noise features and is less sensitive to variations of μ a and μ' s at a source-detector separation of 30 mm. Also, we have demonstrated that relative BFi (rBFi) can be extracted by DCS-NET with a much lower error of 8.35%. By contrast, the semi-infinite and three-layer fitting models result in significant errors in rBFi of 43.76% and 19.66%, respectively. Conclusions: DCS-NET can robustly quantify blood flow measurements at considerable source-detector distances, corresponding to much deeper biological tissues. It has excellent potential for hardware implementation, promising continuous real-time blood flow measurements.
Original language | English |
---|---|
Article number | 015004 |
Number of pages | 22 |
Journal | Journal of Biomedical Optics |
Volume | 29 |
Issue number | 1 |
DOIs | |
Publication status | Published - 27 Jan 2024 |
Keywords
- deep learning
- blood flow
- diffuse correlation spectroscopy
- DCS
Fingerprint
Dive into the research topics of 'Quantification of blood flow index in diffuse correlation spectroscopy using a robust deep learning method'. Together they form a unique fingerprint.Projects
- 1 Active
-
QuantIC - The UK Quantum Technology Hub in Quantum Imaging
Dawson, M. (Principal Investigator), Jeffers, J. (Co-investigator) & Strain, M. (Co-investigator)
EPSRC (Engineering and Physical Sciences Research Council)
1/12/19 → 31/05/25
Project: Research