Pulse propagation effects in a cyclotron resonance maser amplifier

Research output: Contribution to journalArticlepeer-review

8 Citations (Scopus)

Abstract

An analysis is presented of a cyclotron resonance maser amplifier operating with electron pulses. The electrons are resonant at two frequencies of the same waveguide mode. We consider both a single resonant frequency interaction and also a coupled two resonant frequency interaction. It is shown that, in general, the interaction with both resonant frequencies must be taken into account. The analysis includes propagation effects due to the difference between the axial velocity of the electrons and the group velocities of the radiation fields. Both linear and numerical solutions to the equations are given, and superradiant emission is demonstrated where the radiated power scales as the square of the electron pulse current. Two methods of low-frequency suppression are presented allowing the high-frequency emission to dominate. These results may have important consequences for the generation of short pulses of high-frequency, high-power microwave radiation. [S1063-651X(99)01001-6].

Original languageEnglish
Pages (from-to)1152-1166
Number of pages15
JournalPhysical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics
Volume59
Issue number1
DOIs
Publication statusPublished - Jan 1999

Keywords

  • free electron laser
  • wave guide modes
  • high-gain FEL
  • autoresonance maser oscillators
  • FEM
  • electron beam
  • superradiance
  • cyclotron maser
  • superradiant
  • slippage
  • electron bunches
  • microwave amplifier
  • electron bunch

Fingerprint

Dive into the research topics of 'Pulse propagation effects in a cyclotron resonance maser amplifier'. Together they form a unique fingerprint.

Cite this