Protodefluorinated Selectfluor® promotes aggregative activation of Selectfluor® for efficient C(sp3)−H fluorination reactions

Shahboz Yakubov, Bastian Dauth, Willibald Stockerl, Wagner M. da Silva, Ruth M. Gschwind*, Joshua P. Barham*

*Corresponding author for this work

Research output: Working paperWorking Paper/Preprint

Abstract

We report herein a simple, yet unexpected approach to dramatically improve the efficiencies of radical fluorination reactions of C(sp3)−H bonds. H−TEDA(BF4)2 is readily generated as a byproduct during fluorination reactions with Selectfluor®, the world’s most popular organic fluorination reagent. However, H−TEDA(BF4)2 to date is overlooked and discarded as waste, despite comprising 95% of the M.W. of Selectfluor®. We demonstrate that the addition of H−TEDA(BF4)2 at the start of fluorination reactions markedly increases their rates, outcompeting side reactions to access higher overall yields of fluorinated products. Showcasing the generality of the phenomenon, the performance additive enhances both photochemical/photocatalytic and thermal radical fluorination reactions by decreasing a discovered induction period in the former and by increasing the rate in the latter. Detailed mechanistic investigations reveal the key importance of aggregation changes in Selectfluor® and H−TEDA(BF4)2 to fill gaps of understanding in how radical C(sp3)−H fluorination reactions work. This study exemplifies how an overlooked reaction waste product can be upcycled for a high value-added application.
Original languageEnglish
Number of pages26
DOIs
Publication statusPublished - 22 Nov 2023

Funding

We report herein a simple, yet unexpected approach to dramatically improve the efficiencies of radical fluorination reactions of C(sp3)−H bonds. H−TEDA(BF4)2 is readily generated as a byproduct during fluorination reactions with Selectfluor®, the world’s most popular organic fluorination reagent. However, H−TEDA(BF4)2 to date is overlooked and discarded as waste, despite comprising 95% of the M.W. of Selectfluor®. We demonstrate that the addition of H−TEDA(BF4)2 at the start of fluorination reactions markedly increases their rates, outcompeting side reactions to access higher overall yields of fluorinated products. Showcasing the generality of the phenomenon, the performance additive enhances both photochemical/photocatalytic and thermal radical fluorination reactions by decreasing a discovered induction period in the former and by increasing the rate in the latter. Detailed mechanistic investigations reveal the key importance of aggregation changes in Selectfluor® and H−TEDA(BF4)2 to fill gaps of understanding in how radical C(sp3)−H fluorination reactions work. This study exemplifies how an overlooked reaction waste product can be upcycled for a high value-added application.

Keywords

  • SelectFluor
  • fluorination
  • aggregation
  • radical reactions
  • photocatalysis

Fingerprint

Dive into the research topics of 'Protodefluorinated Selectfluor® promotes aggregative activation of Selectfluor® for efficient C(sp3)−H fluorination reactions'. Together they form a unique fingerprint.

Cite this