Protein kinase C-dependent cyclic AMP formation in airway smooth muscle: the role of type II adenylate cyclase and the blockade of extracellular-signal-regulated kinase-2 (ERK-2) activation

N J Pyne, N Moughal, P A Stevens, D Tolan, S Pyne

Research output: Contribution to journalArticle

33 Citations (Scopus)

Abstract

Bradykinin activates adenylate cyclase via a pathway that involves the 'up-stream' regulation of phospholipase D (PLD)-catalysed hydrolysis of phosphatidylcholine and activation of protein kinase C (PKC) in airway smooth muscle [Stevens, Pyne, Grady and Pyne (1994) Biochem. J. 297, 233-239]. Coincident signal (Gs alpha and PKC) amplification of the cyclic AMP response can be completely attenuated either by diverting PLD-derived phosphatidate or by inhibiting PKC. In this regard, the coincident signal detector type II adenylate cyclase is expressed as a 110/112 kDa polypeptide in these cells. PKC alpha is not involved in the activation of adenylate cyclase, since a B2-receptor antagonist (NPC567, 10 microM) blocked its bradykinin-stimulated translocation to the membrane and was without effect against both bradykinin-stimulated PLD activity and cyclic AMP formation. Cyclic AMP formation can also be activated by platelet-derived growth factor (PDGF), via a PKC-dependent pathway, although the magnitude of the response is less than that elicited by bradykinin. Nevertheless, these results indicate that multiple receptor types employ PKC to initiate cyclic AMP signals. PDGF (10 ng/ml) elicited the marked sustained activation of extracellular-signal-regulated kinase-2 (ERK-2), whereas bradykinin (1 microM) provoked only modest transient activation of ERK-2. Deoxyadenosine (0.1 mM), a P-site inhibitor of adenylate cyclase, blocked bradykinin-stimulated cyclic AMP formation and converted the activation of ERK-2 into a sustained response. Thus the PKC-stimulated cyclic AMP response can limit the activation of ERK-2 in response to bradykinin. These studies indicate that the integration of distinct signal pathways by adenylate cyclase can determine the kinetics of ERK activation, an enzyme that appears to be important for mitogenic progression.
LanguageEnglish
Pages611-616
Number of pages6
JournalBiochemical journal
Volume304
Issue number2
Publication statusPublished - 1994

Fingerprint

Mitogen-Activated Protein Kinase 1
Bradykinin
Adenylyl Cyclases
Cyclic AMP
Protein Kinase C
Smooth Muscle
Muscle
Chemical activation
Phospholipase D
Protein Kinase C-alpha
Platelet-Derived Growth Factor
Enzyme Activation
Phosphatidylcholines
Amplification
Hydrolysis
Signal Transduction
Up-Regulation
Detectors
Membranes
Peptides

Keywords

  • adenylate cyclase
  • animals
  • bradykinin
  • calcium-calmodulin-dependent protein kinases
  • cells
  • cyclic AMP
  • enzyme activation
  • mitogen-activated protein kinase 1
  • phosphatidic acids
  • phospholipase D
  • platelet-derived growth factor
  • protein kinase C
  • trachea

Cite this

@article{6853836b7add49819226e7dca71a6e3a,
title = "Protein kinase C-dependent cyclic AMP formation in airway smooth muscle: the role of type II adenylate cyclase and the blockade of extracellular-signal-regulated kinase-2 (ERK-2) activation",
abstract = "Bradykinin activates adenylate cyclase via a pathway that involves the 'up-stream' regulation of phospholipase D (PLD)-catalysed hydrolysis of phosphatidylcholine and activation of protein kinase C (PKC) in airway smooth muscle [Stevens, Pyne, Grady and Pyne (1994) Biochem. J. 297, 233-239]. Coincident signal (Gs alpha and PKC) amplification of the cyclic AMP response can be completely attenuated either by diverting PLD-derived phosphatidate or by inhibiting PKC. In this regard, the coincident signal detector type II adenylate cyclase is expressed as a 110/112 kDa polypeptide in these cells. PKC alpha is not involved in the activation of adenylate cyclase, since a B2-receptor antagonist (NPC567, 10 microM) blocked its bradykinin-stimulated translocation to the membrane and was without effect against both bradykinin-stimulated PLD activity and cyclic AMP formation. Cyclic AMP formation can also be activated by platelet-derived growth factor (PDGF), via a PKC-dependent pathway, although the magnitude of the response is less than that elicited by bradykinin. Nevertheless, these results indicate that multiple receptor types employ PKC to initiate cyclic AMP signals. PDGF (10 ng/ml) elicited the marked sustained activation of extracellular-signal-regulated kinase-2 (ERK-2), whereas bradykinin (1 microM) provoked only modest transient activation of ERK-2. Deoxyadenosine (0.1 mM), a P-site inhibitor of adenylate cyclase, blocked bradykinin-stimulated cyclic AMP formation and converted the activation of ERK-2 into a sustained response. Thus the PKC-stimulated cyclic AMP response can limit the activation of ERK-2 in response to bradykinin. These studies indicate that the integration of distinct signal pathways by adenylate cyclase can determine the kinetics of ERK activation, an enzyme that appears to be important for mitogenic progression.",
keywords = "adenylate cyclase, animals, bradykinin, calcium-calmodulin-dependent protein kinases, cells, cyclic AMP, enzyme activation, mitogen-activated protein kinase 1, phosphatidic acids, phospholipase D, platelet-derived growth factor, protein kinase C, trachea",
author = "Pyne, {N J} and N Moughal and Stevens, {P A} and D Tolan and S Pyne",
year = "1994",
language = "English",
volume = "304",
pages = "611--616",
journal = "Biochemical Journal",
issn = "0264-6021",
number = "2",

}

TY - JOUR

T1 - Protein kinase C-dependent cyclic AMP formation in airway smooth muscle: the role of type II adenylate cyclase and the blockade of extracellular-signal-regulated kinase-2 (ERK-2) activation

AU - Pyne, N J

AU - Moughal, N

AU - Stevens, P A

AU - Tolan, D

AU - Pyne, S

PY - 1994

Y1 - 1994

N2 - Bradykinin activates adenylate cyclase via a pathway that involves the 'up-stream' regulation of phospholipase D (PLD)-catalysed hydrolysis of phosphatidylcholine and activation of protein kinase C (PKC) in airway smooth muscle [Stevens, Pyne, Grady and Pyne (1994) Biochem. J. 297, 233-239]. Coincident signal (Gs alpha and PKC) amplification of the cyclic AMP response can be completely attenuated either by diverting PLD-derived phosphatidate or by inhibiting PKC. In this regard, the coincident signal detector type II adenylate cyclase is expressed as a 110/112 kDa polypeptide in these cells. PKC alpha is not involved in the activation of adenylate cyclase, since a B2-receptor antagonist (NPC567, 10 microM) blocked its bradykinin-stimulated translocation to the membrane and was without effect against both bradykinin-stimulated PLD activity and cyclic AMP formation. Cyclic AMP formation can also be activated by platelet-derived growth factor (PDGF), via a PKC-dependent pathway, although the magnitude of the response is less than that elicited by bradykinin. Nevertheless, these results indicate that multiple receptor types employ PKC to initiate cyclic AMP signals. PDGF (10 ng/ml) elicited the marked sustained activation of extracellular-signal-regulated kinase-2 (ERK-2), whereas bradykinin (1 microM) provoked only modest transient activation of ERK-2. Deoxyadenosine (0.1 mM), a P-site inhibitor of adenylate cyclase, blocked bradykinin-stimulated cyclic AMP formation and converted the activation of ERK-2 into a sustained response. Thus the PKC-stimulated cyclic AMP response can limit the activation of ERK-2 in response to bradykinin. These studies indicate that the integration of distinct signal pathways by adenylate cyclase can determine the kinetics of ERK activation, an enzyme that appears to be important for mitogenic progression.

AB - Bradykinin activates adenylate cyclase via a pathway that involves the 'up-stream' regulation of phospholipase D (PLD)-catalysed hydrolysis of phosphatidylcholine and activation of protein kinase C (PKC) in airway smooth muscle [Stevens, Pyne, Grady and Pyne (1994) Biochem. J. 297, 233-239]. Coincident signal (Gs alpha and PKC) amplification of the cyclic AMP response can be completely attenuated either by diverting PLD-derived phosphatidate or by inhibiting PKC. In this regard, the coincident signal detector type II adenylate cyclase is expressed as a 110/112 kDa polypeptide in these cells. PKC alpha is not involved in the activation of adenylate cyclase, since a B2-receptor antagonist (NPC567, 10 microM) blocked its bradykinin-stimulated translocation to the membrane and was without effect against both bradykinin-stimulated PLD activity and cyclic AMP formation. Cyclic AMP formation can also be activated by platelet-derived growth factor (PDGF), via a PKC-dependent pathway, although the magnitude of the response is less than that elicited by bradykinin. Nevertheless, these results indicate that multiple receptor types employ PKC to initiate cyclic AMP signals. PDGF (10 ng/ml) elicited the marked sustained activation of extracellular-signal-regulated kinase-2 (ERK-2), whereas bradykinin (1 microM) provoked only modest transient activation of ERK-2. Deoxyadenosine (0.1 mM), a P-site inhibitor of adenylate cyclase, blocked bradykinin-stimulated cyclic AMP formation and converted the activation of ERK-2 into a sustained response. Thus the PKC-stimulated cyclic AMP response can limit the activation of ERK-2 in response to bradykinin. These studies indicate that the integration of distinct signal pathways by adenylate cyclase can determine the kinetics of ERK activation, an enzyme that appears to be important for mitogenic progression.

KW - adenylate cyclase

KW - animals

KW - bradykinin

KW - calcium-calmodulin-dependent protein kinases

KW - cells

KW - cyclic AMP

KW - enzyme activation

KW - mitogen-activated protein kinase 1

KW - phosphatidic acids

KW - phospholipase D

KW - platelet-derived growth factor

KW - protein kinase C

KW - trachea

UR - http://www.biochemj.org/bj/304/bj3040611.htm

UR - http://www.biochemj.org/bj/304/0611/3040611.pdf

M3 - Article

VL - 304

SP - 611

EP - 616

JO - Biochemical Journal

T2 - Biochemical Journal

JF - Biochemical Journal

SN - 0264-6021

IS - 2

ER -